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Eight subgrid-scale (SGS) models were evaluated using two flow configurations: homo-
geneous decaying turbulence, and rotating turbulence forced at large or intermediate
scales. Testing was performed for the first configuration through a systematic compar-
ison between direct numerical simulation results and large eddy simulation results of
many characteristics, including resolved kinetic energy, SGS energy production, molec-
ular dissipation, and kinetic energy spectrum. The new models, which are based on
dynamic structure model and satisfy the consistency of material frame indifference with
the SGS stress, showed more accurate results than traditional models. In the forced test-
ing, the new models were better able to capture essential features of rotating turbulence,
including cyclonic/anti-cyclonic asymmetry, quasi-2D at large scales, and reverse kinetic
energy transfer from small to large scales.

Keywords: Rotating turbulence; large eddy simulation; dynamic structure model.

1. Introduction

Rotation has a significant influence on large-scale atmospheric and oceanic flows as
well as some engineering flows (e.g., turbulence in jet engines). The Coriolis force
appears in the momentum equations as a linear part; however, it may radically
change the nonlinear dynamics. Studies, including experiments, theoretical analy-
sis, and numerical simulations, have addressed that rotation turbulence has many
characteristic features, such as the tendency toward 2D flow,7,2 the cyclonic/anti-
cyclonic asymmetry in favor of cyclone,36,30 and the influence of the background
rotation on the kinetic energy transfer, including the reduced transfer from large
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scales to small scales and the reverse transfer from small scales to large scales.7,28

To deliver these features, accurate modeling of the effects of rotation on turbulence
using large eddy simulation (LES) is a great challenge.

The LES equations of homogeneous incompressible rotating flow are

∂ūi

∂xi
= 0 ,

∂ūi

∂t
+

∂ūiūj

∂xj
= − ∂p̄

∂xi
− 2Ωϵi3j ūj + ν

∂2ūi

∂xj∂xj
+ f̄i −

∂τij

∂xj
, (1)

where p̄ is the effective pressure, ν is the kinematic viscosity, f̄i is a forcing term,
Ω is the (constant) rotation rate, and the subgrid-scale (SGS) stress tensor is τij =
uiuj− ūiūj. The goal of LES modeling is to represent the SGS stress in terms of the
resolved velocity field, ūi(x, t). Most traditional turbulent models are based on the
assumption that small-scale turbulence is isotropic, and they may perform poorly
in the presence of rotation.

Speziale38 and Fureby and Tabor14 carried out analyses of the frame transforma-
tion properties of the SGS stress. Further, studies have stated that the consistency
of material frame indifference (MFI) should be imposed not only on the vector level
∂τij/∂xj but also on the tensor level τij itself,34,21,18,25 and most of the existing
SGS models are not MFI consistent. It can be guaranteed that “the implementation
of the correction terms into the SGS models in actual LES yields results no different
from those obtained without implementation of the correction terms,” only if the
SGS models obey the same transformation rules as the exact SGS stress tensor.18

In other words, LES in a rotating frame using an MFI consistent model can avoid
the error that results from frame transformation.25

The goal of the current research is to perform a comparative study of LES
using various SGS models. This work follows our previous a priori study25 of
LES models in rotating turbulence. We test the following traditional SGS models,
which are important representatives of the available SGS models: the Smagorin-
sky model,35 the dynamic Smagorinsky model (DynSM),15,23 the scale similarity
model,1,24 the mixed scale similarity model (MSSM),42,39 the subgrid kinetic en-
ergy model (KEM),12,16,20,27 and the dynamic structure model (DSM).33,10 We
also assess two new mixed one-equation models that are in the DSM family and
are developed based on the assumption that the modeled stress tensor is MFI con-
sistent.25

The remainder of this paper is organized as follows. Section 2 reviews SGS
models and presents the development of new models. Section 3 compares LES re-
sults with filtered DNS data for decaying turbulence. The results of forced rotating
turbulent flows are discussed in Sec. 4, and Sec. 5 summarizes the findings.

2. SGS Models and Numerical Methods

2.1. Traditional SGS models

Based on the Boussinesq hypothesis,6 a common class of SGS models describes
the trace-free part of the SGS tensor using the form τij − (τkk/3)δij ≈ −2νtS̄ij ,
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where S̄ij = (1/2)(∂ūi/∂xj + ∂ūj/∂xi) and νt is the eddy viscosity. Smagorinsky35

introduced the first expression, νt = (Cs∆)2|S̄|, where |S̄| = (2S̄ijS̄ij)1/2, and we
adopt the Smagorinsky coefficient, Cs = 0.18, in the paper as suggested by Lilly.22

This model is denoted as SM for subsequent discussions.
However, for complex flows, it may not be possible to find a single universal

constant that is appropriate for the entire domain at all times. Thus, Germano
et al.15 and Lilly23 proposed the DynSM, νt = CD(∆)2|S̄|. The Germano identity15

defines a test filtering whose width ∆̂ is larger than the grid filter width ∆ (typically
∆̂ = 2∆). Using the least-square-error approach, the model coefficient is determined
as CD = (⟨LijMij⟩/⟨MklMkl⟩), where ⟨·⟩ represents the arithmetic mean, Lij =
̂̄uiūj − ˆ̄ui ˆ̄uj and Mij = 2(∆2 |̂S̄|S̄ij − ∆̂2| ˆ̄S| ˆ̄Sij).

The KEM is another widely used eddy viscosity model,12,16,20,27 by which the
full SGS stress is modeled as τij ≈ (2/3)ksgsδij − 2νkS̄ij , where ksgs = (1/2)τkk

and νk = Ck

√
ksgs∆. An approximation for ksgs is obtained solving the transport

equation

∂ksgs
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+ ūj
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∂xj
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+

∂
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)
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∂xj

]
. (2)

Here, the three terms on the right-hand side represent, respectively, the production,
the dissipation, and the diffusion. The constants are typically chosen as Ck = 0.05,
Cc = 1.0, and σk = 1.0 based on a previous study by Yoshizawa and Horiuti.41

The eddy viscosity closure assumes a one-to-one correlation between τij and S̄ij .
However, studies using DNS data11,27,25 and experimental data24 have displayed
very little correlation between them. Thus, Bardina et al.1 proposed the original
scale similarity model in 1980. We study a modified version whose expression is
Galilean invariant, τij ≈ CLLM

ij , where LM
ij = ūiūj−ū̄i ū̄j , and we set CL = 1.0 in

this paper. This model is denoted as SSM for subsequent discussions.
Bardina et al.1 have also noted that the scale similarity model alone is not

dissipative enough and causes numerical instability, and thus introduced a lin-
ear combination of this model and an eddy viscosity model. Zang et al.42 pro-
posed a dynamic mixed approach to calculate the eddy viscosity model coefficient.
Vreman et al.39 introduced an improvement version removing some mathematical
inconsistencies. The MSSM is written as τij ≈ CLLM

ij − 2CSSM
D ∆2|S̄|S̄ij , where

CSSM
D = (⟨(Lij − Hij)Mij⟩/⟨MklMkl⟩) and Hij = ̂̄̂

ui ˆ̄uj −
ˆ̂̄̄
ui

ˆ̂̄̄
uj − ( ̂̄uiūj −¯̂ūi ū̄j).

Pomraning and Rutland33 introduced the DSM. Although it is a nonviscosity
model, it yields good agreement with filtered DNS data at the a posteriori test level
for low-Reynolds number isotropic turbulence.10 This model uses a tensor form of
the SGS stresses: τij = Cijksgs. Note that Cij must satisfy Cii = 2. Assuming the
same form at the test filtering level, Tij = ûiuj − ˆ̄ui ˆ̄uj = CijK, and integrating it
into the Germano identity, one finds Tij − τ̂ij = ̂̄uiūj − ˆ̄ui ˆ̄uj = CijK − Ĉijksgs ≈
Cij(K − k̂sgs). For this model, the structure of τij is extracted from Lij , and ksgs

helps predict the magnitude. For equal test and grid filter sizes, this model reduces
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to an algebraic expression, τij ≈ (LM
ij /LM

mm)2ksgs. This model is a one-equation
model and needs the transport equation (2) for ksgs.

2.2. Mixed MFI consistent DSMs

At the a priori test level, the DSM has been shown to have excellent agreement
with the actual SGS stresses in isotropic turbulence.25 However, the modeled stress
tensor is not MFI consistent with the exact SGS stress tensor. Studies18,25 have
stated that the nonlinear model and the summation of the modified Leonard term
and the modified cross term, LM

ij + CM
ij , where CM

ij = ūiu′
j + u′

iūj− ū̄i u′
j − u′

i ū̄j ,
are MFI consistent. Thus, in previous work we proposed two models in the DSM
family that are MFI consistent.25

To provide adequate dissipation at small scales, we include an eddy viscos-
ity term. Further, to overcome the weakness that the traditional eddy viscosity
(−2νtS̄ij) is too dissipative at large scales, which may hinder kinetic energy from
transferring to large scales, we consider a hyper-viscosity term (+νu∇2S̄ij) as sug-
gested by previous researchers.4,13

The mixed gradient-type consistent DSM (MGCDSM) is defined as

τij ≈
(

Gij

Gmm

)
2ksgs + νu∇2S̄ij , where Gij =

∂ūi

∂xk

∂ūj

∂xk
. (3)

Here, the hyper-viscosity magnitude νu can be calculated by either νu = C′
s∆4|S̄| or

νu = C′
k∆3

√
ksgs. Note that C ′

s and C′
k can be determined by dynamic procedures.

In this paper, we use the second method with an empirical constant C ′
k = 0.008.

A second model can be formed using the fact that LM
ij + CM

ij is MFI consistent.
The mixed similarity-type consistent DSM (MSCDSM) is expressed as

τij ≈
(

Υij

Υmm

)
2ksgs + νu∇2S̄ij , (4)

where Υij = CLLM
ij + CC [(ū̄iūj− ū̄̄iū̄j) + (ūiū̄j− ū̄i

¯̄ūj) − 2(ū̄i ū̄j− ū̄i ū̄j)] is one
possible model of LM

ij + CM
ij . When the cross term is approximated in the form of

the generalized scale similarity model, CC is a O(1) dimensionless coefficient,17 and
we adopt CC = 1.5 in this paper.

2.3. Numerical setup

Direct numerical simulations and large eddy simulations have been performed us-
ing a pseudo-spectral code, which is similar to codes used in several previous stud-
ies.29,37 In these codes, the linear viscosity and Coriolis terms are included with an
integrating factor, which is helpful to increase numerical stability and to decrease
numerical diffusion. In this study, the time advance is carried out through the use of
an explicit third-order Runge–Kutta scheme, which is applied to the nonlinear term
and the modeled SGS stress term. Note that direct numerical simulations exclude
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the modeled SGS stress term. The highest available wave number is set according
to the 2/3 de-aliasing rule.8

Decaying turbulent cases does not include any kinetic energy source. Forced
turbulent cases use Gaussian white-noise forcing as an energy source, with forcing
spectrum chosen to be Gaussian, F (k) = εf

exp(−0.5(k−kf )2/σ2)
(2π)1/2σ

, where kf is the
forcing peak wave number. As a typical setup,37 the standard deviation is taken to
be σ = 1, and the energy input rate is approximately εf = 1.

The Rossby number characterizes the dimensionless ratio of the rotation time-
scale ((2Ω)−1) to a nonlinear time-scale. A micro-scale Rossby number Roω3 is
defined as Roω3 = ω′

3/(2Ω), where ω′
3 is the root-mean-square vorticity in the z-

direction. When the Rossby number is large, the effects of rotation can be neglected.
A small Rossby number indicates that the effects of rotation are comparably large.
There are several challenges for LES of rapidly rotating flow with Rossby numbers
less than unity. Accurate computations will reproduce at least four important fea-
tures (some more prominent in forced flow as compared with decaying turbulence):

(i) significant net transfer of energy from small to large-scales;
(ii) scaling of the large-scale energy spectrum approximately E(k) ≈ E(kh =√

k2
x + k2

y; kz = 0) ∝ k−3;
(iii) the generation of large-scale vortical columns, with dominance of cyclones over

anti-cyclones; and
(iv) a tendency toward 2D and two-component flow, with much lower levels of

energy in the velocity component parallel to the rotation axis.

Studies7,36 have suggested that numerical simulations are restricted by res-
olution constraints to moderately small Rossby numbers less than unity. With
guidance from previous studies,3,5 we have performed simulations over a range
of 0.1 ! Roω3 ! 0.4.

We solve the LES equations (1) numerically on a mesh of spacing h =
2π/ max(nx, ny, nz), where nx, ny, and nz are the point numbers in the x-, y-,
and z-directions, and treat ∆ = 2h for sixth-order accuracy.40,9 For simplicity, we
use some abbreviated expressions below: “large eddy simulation using SM” is ab-
breviated as “SM,” “large eddy simulation using SM at the resolution of 323” is
abbreviated as “323 SM,” etc.

3. Decaying Turbulence

Decaying rotating turbulence, which ignores the effects of forcing, is a typical setup
for the assessment of SGS models. In this section, we apply models to an isotropic
turbulent decaying case and a rotating turbulent decaying case. The initial Taylor
micro-scale Reynolds number (Reλ) is about 85. Thus, the 1283 DNS has resolved
flow of all scales, and the DNS results can be used to verify the accuracy of SGS
models and identify their problems. We set a rather restrictive Courant–Friedrichs–
Lewy number of ∼ 0.15 for decaying simulations.
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Fig. 1. Normalized kinetic energy spectra of DNS cases in their initial stages: (a) 3D kinetic
energy spectrum of Case A; (b) 3D and 2D kinetic energy spectra of Case B.

Case A starts from an isotropic turbulent state derived from an isotropic case,
which has been described extensively in a previous article.25 After that case has
reached its statistically steady state, we turn off the forcing. The flow decays over
about two initial eddy turn-over times and reaches the initial state for isotropic
Case A, which has Reλ = 85. The eddy turn-over time is defined as τ = K/ε,
where K is the total kinetic energy and ε is the total dissipation rate. Figure 1(a)
shows the normalized 3D kinetic energy spectrum (E(k)/(εν5)1/4) of this initial
state; to compare with the Kolmogorov spectrum, a −5/3 power law is shown as a
dotted line.

Case B starts from a rotating turbulent state. We use the Gaussian forcing to add
energy at large scales (kf = 2.5) to an initial very low energy isotropic random noise,
and add rotational force from the very beginning. Such a problem has been studied
extensively in the past.37,36 Then, we stop the forced run at a statistically steady
state to provide the initial state for Case B, which has Reλ = 86 and Roω3 = 0.41
(Ω = 1). Figure 1(b) shows the normalized 3D kinetic energy spectrum and the
normalized 2D kinetic energy spectrum (E(kh; kz = 0)/(εν5)1/4) of this initial
state.

At the a posteriori test level, the “grid” level filter shape is not explicitly spec-
ified. We assume the Gaussian filtering at the “grid” level in order to obtain the
filtered DNS results. Note that we have filtered DNS data (including initial con-
ditions) with cutoff wave number, kc = 21, to derive the 643 LES field and with
kc = 11 to derive the 323 LES field. We have normalized time using initial eddy
turn-over time for subsequent discussions.

3.1. Results and discussions

Figures 2 and 3 show the evolution of the total resolved kinetic energy, Kr =∫
(1/2)ūiūidx. Clearly, the simulation without a model yields the worst prediction
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(a) (b)

Fig. 2. Total resolved kinetic energy evolution obtained from the filtered 1283 DNS, and various
323 large eddy simulations in (a) Case A and (b) Case B.

(a) (b)

Fig. 3. Total resolved kinetic energy evolution obtained from the filtered 1283 DNS and various
643 large eddy simulations in (a) Case A and (b) Case B.

and the results from two new models, the MGCDSM and the MSCDSM, are in
excellent agreement with the filtered DNS results.

The simulation without a model simply omits τij . The decaying cases start at
the initial Reynolds number of about 85 and are exceedingly beyond the capability
of 323 simulation (typically Reλ ∼ 30). Thus, the total resolved kinetic energy
obtained from the 323 simulation without a model decreases more slowly. Figure 4
illustrates that kinetic energy at small scales is hardly dissipated. Together with
the fact that a great amount of kinetic energy at large scales transfers into small
scales,26 turbulent flow is accumulating kinetic energy at small scales. The increase
of grid resolution from 323 (Fig. 2) to 643 (Fig. 3) facilitates the prediction of the
kinetic energy decay. However, in Case A, the 643 simulation without a model still
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(a) (b)

Fig. 4. 3D kinetic energy spectrum obtained from the filtered 1283 DNS, the 323 SM, the 323

SSM, the 323 MGCDSM, and the 323 MSCDSM in (a) Case A at time = 0.4 and (b) Case B at
time = 0.7.

τ

(a)

τ

(b)

Fig. 5. SGS energy production evolution obtained from the filtered 1283 DNS, the 323 SM, the
323 SSM, the 323 MGCDSM, and the 323 MSCDSM in (a) Case A and (b) Case B.

yields a much lower kinetic energy decay rate. In order to obtain proper kinetic
energy decay rates, turbulence modeling is needed for coarser grids.

The decay of the total resolved kinetic energy is described by (DKr/Dt) =
−

∫
Pdx −

∫
εrdx, where εr = ν(∂ūi/∂xj)(∂ūi/∂xj) is the molecular dissipation,

and P = −τij(∂ūi/∂xj) is the SGS energy production (sometimes referred to as
“energy flux”). The SGS energy production represents the kinetic energy transfer
from resolved scales to SGS and is regarded as the kinetic energy source at SGS. The
rotational term will not explicitly appear in this equation, since analytically (Ω×ū)·
ū = 0. Figure 5 shows the SGS energy production evolution. The simulation without
a model has no SGS energy production, since no SGS model is adopted. Figure 6
shows the evolution of the normalized (by initial value) molecular dissipation.
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Fig. 6. Molecular dissipation evolution obtained from the filtered 1283 DNS, the 323 SM, the
323 SSM, the 323 MGCDSM, and the 323 MSCDSM in (a) Case A and (b) Case B.

Figures 2 and 3 show that the SM yields higher kinetic energy decay rates in
comparison with the filtered DNS results. Figure 4 shows that kinetic energy over a
wide range of length scales is dissipated excessively in simulations using the SM. In
principle, SGS models represent the effects of the unresolved SGS motions on the
resolved scales, and the large-scale flows are solved explicitly. Thus, the excessive
dissipation at large scales may be considered as an incorrect manner. Further, Fig. 5
shows that the SM yields higher SGS energy production over a long period of time,
and this indicates that too much kinetic energy has been delivered to SGS.

The SSM resolves many weaknesses of the SM: for instance, it allows for
“backscatter” and yields high correlations (ρ > 0.6) with the SGS stress over a
wide range of filter sizes.24,25 Figure 2 shows that, over a long period of time, the
SSM yields lower kinetic energy decay rates in both Cases A and B. It is consistent
with previous findings that the SSM is not dissipative.1 In Case B, the SSM per-
forms as poorly as the simulation without a model. Kinetic energy at small scales is
accumulating and cannot be dissipated effectively, as shown in Fig. 4. The primary
reason is that the SSM yields much lower SGS energy production (Fig. 5); thus,
there is an insufficient transfer of kinetic energy to SGS using the SSM. Figure 6
shows that the presence of too many small scales leads to the over-predicted molec-
ular dissipation for both the 323 simulation without a model and the SSM. In this
manner, the molecular dissipation takes over part of the work that the SGS energy
production should have performed. Further, if the grid resolution is increased from
323 (Fig. 2) to 643 (Fig. 3), the SSM delivers much better results. This strong
resolution dependence implies the possibility that a model could yield significantly
different global results for different resolutions and may be considered as a crucial
disadvantage of the SSM.

The DynSM, the MSSM, the KEM, and the DSM are developed to resolve
disadvantages of earlier models. Figure 2 has shown that they can deliver more
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accurate kinetic energy decay rates than the SSM. In Case A, the DynSM and the
MSSM yield better outcomes of kinetic energy; however, four models still fail to
yield sufficient dissipation and result in lower kinetic energy decay rates. In Case B,
over all the DynSM and the KEM yield better outcomes of kinetic energy, and the
MSSM yields slightly better results than the SSM. The expressions of the DynSM,
the KEM, and the MSSM include eddy viscosity terms; however, the DSM is a one-
equation nonviscosity model. Pomraning and Rutland33 found that the DSM yields
good results in low Reynolds number isotropic flows. In both high-Reynolds number
cases A and B, the DSM is also capable of providing dissipation (but insufficiently)
and initially yields results similar to those of the other three models.

As shown in Figs. 2 and 3, the total resolved kinetic energy results obtained
from the new models are in excellent agreement with the filtered DNS data, and
the results are also very consistent across different resolutions. In Case A, the new
models yield accurate SGS energy production [Fig. 5(a)] and accurate molecular
dissipation [Fig. 6(a)]. In Case B, they yield slightly lower levels of molecular dis-
sipation [Fig. 6(b)]; however, they compensate this somewhat minor weakness by
slightly over-predicting SGS energy production, as shown in Fig. 5(b).

Figure 7 compares the SM (as a representative of eddy viscosity closure) and
the MGCDSM with respect to a ∂τij/∂xj power spectrum, which is normalized
by a magnitude at k = 21. The influences of the MGCDSM on large-scale flows
are comparably minor, and the SM yields more dissipation over all scales. Energy
spectrum comparisons (Fig. 4) have demonstrated that the new models yield more
accurate results at large scales than the SM.

Using a one-equation approach enables us to calculate the ratio of SGS ki-
netic energy (Ksgs =

∫
(1/2)τiidx) to total kinetic energy (Ksgs + Kr), and this

calculation describes the dominant level of SGS to resolved scales. The SGS flows,

!"
!

Fig. 7. Normalized (at k = 21) power spectrum of ∂τij/∂xj obtained from the 643 SM and the
643 MGCDSM in the LES of Case A.
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which initially account for ∼ 35% (∼ 16%) of the turbulent kinetic energy at the res-
olution of 323 (643), are of great intensity for current cases, and thus the imperfect
modeling of SGS stress may cause significant disagreement with the filtered DNS
results. It has been illustrated that at the a priori test level, the MFI consistent
DSMs are more accurate in both isotropic turbulence and rotating turbulence.25

This fact offers another reason why the new models yield more accurate a posteriori
results.

4. Forced Rotating Turbulence

Unlike many previous studies, such as rotating turbulence in channel,12,31 which
involves certain kinetic energy sources, in this section we assess models by including
Gaussian forcing in rotating turbulence, excluding boundary layer effects. The large
eddy simulations are forced either at large scales (kf = 2.5) or at intermediate
scales (kf = 12). The molecular viscosity, hypo-, and hyper-viscosities have been
turned off, thus, the modeled SGS stress plays an important role in kinetic energy
transfer. All eight SGS models have been assessed using the same numerical setup
and all simulations have reached their statistically steady states. Corresponding
(match Roω3) benchmark simulations have been performed at the resolution of 1283.
Among the traditional models, the SM is the most used SGS model in engineering
applications, and the MSSM has the most superior performance. Note that in forced
testing, the performances of the two new models are very similar to each other; thus,
the results obtained from the MSCDSM are excluded.

Figure 8(a) shows the 3D and 2D kinetic energy spectra in a statistically steady
state obtained from the 643 MGCDSM. The history of the resolved kinetic energy
is also included to demonstrate one example of all simulations, which have reached
their statistically steady states, and we normalize time using T = 2π/Ω. The flow

1 10

1E-5

1E-4

1E-3

0.01

0.1

0 500 1000

0.0

0.5

E

k

 3D Spectrum

 2D Spectrum

(a)

Gaussian

Forcing

 
K
r

 Time

(a)

0 20 40 60

0.00

0.05

0.10

0.15

0.20

0.25

 64
3
 MGCDSM

 filtered 128
3
 DNS

 
P
D
F

ω
3

 64
3
 MSSM

 64
3
 SM

(b)

(b)

Fig. 8. Assessment of the 643 LES of large-scale forced rotating turbulence at statistically steady
state: (a) 3D and 2D kinetic energy spectra (obtained from the 643 MGCDSM), including the
history of resolved kinetic energy Kr; (b) PDF of ω3 obtained from the filtered 1283 DNS, the
643 SM, the 643 MSSM, and the 643 MGCDSM.
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is forced at large scales, and we use a constant Ω = 12 to achieve Roω3 = 0.12. The
MGCDSM facilitates the two-dimensionalization process resulting in very close 3D
and 2D energy spectra at large scales, k ! 7. Except for the MGCDSM and the
MSCDSM, all other examined models fail to deliver this quasi-2D structure at large
scales.

In order to examine the cyclonic/anti-cyclonic asymmetry, we concentrate on
vortex regions rather than the whole domain, in which small ω3 vortices are still
dominating.30 The vortex regions can be identified using the criterion λ2 < 0a for a
vortex region,19 and we sample over points with λ2 < (1/6)min(λ2) < 0 to obtain
the PDF (ω3). Figure 8(b) compares the SM, the MSSM, and the MGCDSM with
respect to the PDF (ω3). The MGCDSM successfully delivers the cyclonic/anti-
cyclonic asymmetry (the dominance of positive ω3 vortices); others fail to do
so.

Figure 9 examines the MGCDSM at the resolution of 323. The Rossby number
of the statistically steady state is Roω3 = 0.1 (Ω = 2). Comparing the kinetic energy
spectrum plots of Figs. 8(a) and 9(a), even though the model performs worse at
this coarser grid, it is still able to deliver the cyclonic/anti-cyclonic asymmetry.

Figure 10 examines the 643 intermediate-scale forced large eddy simulations. In
the simulation using the MGCDSM, we use a constant Ω = 8 to achieve Roω3 =
0.16. As shown in Fig. 10(a), the MGCDSM yields sufficient dissipation of kinetic
energy at small scales and captures the reverse energy transfer to large scales.
Figure 10(b) compares SGS models with respect to PDF (ω3) and shows that the
MGCDSM is able to deliver the cyclonic/anti-cyclonic asymmetry.

(a)

ω

(b)

Fig. 9. Assessment of the 323 LES of large-scale forced rotating turbulence using the MGCDSM
at statistically steady state: (a) 3D and 2D kinetic energy spectra; and (b) PDF of ω3.

aλ2 is the second large eigenvalue of tensor SimSmj + ΩimΩmj , where Ωij = (1/2)(∂ui/∂xj −
∂uj/∂xi).
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Fig. 10. Assessment of the 643 LES of intermediate-scale forced rotating turbulence at statis-
tically steady state: (a) 3D and 2D kinetic energy spectra (obtained from the 643 MGCDSM);
(b) PDF of ω3 obtained from the filtered 1283 DNS, the 643 SM, the 643 MSSM, and the 643

MGCDSM.

5. Summary and Conclusion

We have presented the a posteriori testing results of various SGS models. The SM,
the SSM, and the KEM are the basis for the latter models. Two flow configurations
(i.e., decaying turbulence and forced rotating turbulence) have been used. The LES
results in the first configuration have been compared with DNS data, and in the
analysis of forced rotating turbulence we substantially focus on the anisotropic
features of rotating turbulence.

In the first series of simulations, the quality of a model is determined by the dis-
crepancy of its results with the filtered DNS results. In order to determine whether
the model is helpful, comparisons with a coarse grid simulation without a model
have been performed. Table 1 summarizes the results. The models are listed with
symbols to indicate if they performed poorly or well on each diagnostic. If we ar-
range the models with respect to the overall accuracy (from higher to lower) of their
results, we may roughly obtain the following sequence: MSCDSM (and MGCDSM),
MSSM (DynSM and KEM), DSM (SM and SSM).

Table 1. Comparison of model performance in the LES of decaying turbulence (initially with
high Reynolds number) at the a-posteriori test level.

Diagnostic SM KEM DynSM SSM MSSM DSM MSCDSM MGCDSM

Kinetic energy − 0 0 − − − + +
SGS production − 0 0 − − − + +
Dissipation 0 0 0 − − − + +
Energy spectrum − + + − + − + +

The symbols − and + refer to bad and good results. The symbol 0 refers to bad results in isotropic
case, but good results in rotating turbulent case.
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DSMs are one class of one-equation models. Differing from zero-equation mod-
els (e.g., SM and DynSM), one-equation models do not assume the local balance
between the SGS kinetic energy production and dissipation rate; thus, they do not
require a priori knowledge to set model constants (e.g., Cs). Moreover, studies have
shown that at the a priori test level, one-equation models improve the accuracy of
SGS stress modeling,27,25 and for rotating turbulence, the MFI consistent DSMs
deliver more accurate modeling of SGS stress in all directions.25

The overall results indicate that mixed models can yield better performance.
This fact has also been observed in many previous studies.42,40 The additional
eddy viscosity term is usually much smaller (! 50 times when measured in the
L2-norm) than the original structure term; thus, it does not degrade the a priori
results.24,25 An analytical point of view is that the eddy viscosity term is modeling
of the higher-order term of the Taylor expansion of SGS stress or the modified
SGS Reynolds stress term. The eddy viscosity term is trace free. Thus, it does not
change the trace of the original structure term, and mixed DSMs still satisfy the
trace requirement τmodel

ii = τii. More importantly at the a posteriori test level,
the eddy viscosity term significantly facilitates the kinetic energy dissipation at
small scales and stabilizes the simulation.1,42,40 The original model usually fails to
perform so.

The eddy viscosity term transfers kinetic energy only from resolved scales to
SGS. As is well known, the SM yields excessive dissipation in low-Reynolds num-
ber isotropic turbulence,10 turbulent channel flow,32 turbulent mixing layer,40 and
many other flows. Note that the SM is excessively dissipative over a wide range
of length scales, and this behavior certainly affects the large-scale flow structure
in rotating turbulence. Two later models, the DynSM and the KEM, are slightly
over dissipative; however, they yield much more accurate results in high-Reynolds
number rotating turbulence.

Examination of the kinetic energy spectrum demonstrates that the MGCDSM
and the MSCDSM deliver more accurate amounts of large scales and sufficient dis-
sipation at small scales. During to insufficient dissipation at small scales by SGS
models, the high-Reynolds number flow simulated using the SSM, the MSSM, the
DSM, the KEM (does not apply to rotating turbulence), and the DynSM (does
not apply to rotating turbulence) contains too much small-scale energy. This yields
a higher molecular dissipation, which supplements the insufficient small-scale dis-
sipation. Note that in rotating turbulence the KEM and the DynSM yield good
agreement with the filtered DNS results.

The second series of simulations concerns rotating turbulence at a much higher
Reynolds number, and we focus the assessment of SGS models on the capability of
capturing essential characteristic features of rotating turbulence. Table 2 summa-
rizes the results.

Although the SM and the MSSM carry eddy viscosities, they are not MFI con-
sistent,25 and may have disadvantages. Specifically, in large-scale forced rotating
turbulence, kinetic energy at large scales is dissipated excessively in simulations
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Table 2. Comparison of model performance in the LES of forced rotating turbulence at the a
posteriori test level.

Diagnostic SM* SSM MSSM DSM MGCDSM MSCDSM

Cyclonic/anticyclonic asymmetry − − − − + +
Quasi-2D flow at large scales − − − − + +
Reverse energy transfer** + − + − + +

The symbols − and + refer to bad and good results. *: including the KEM and the DynSM.
**: only in intermediate-scale forced rotating turbulence.

using the SM. In intermediate-scale forced rotating turbulence, they yield sufficient
dissipate of kinetic energy at small scales and are capable of delivering kinetic en-
ergy from small to large scales. However, most importantly, they fail to deliver the
cyclonic/anti-cyclonic asymmetry.

Comparing with traditional models, the MGCDSM and the MSCDSM are better
able to capture essential features of rotating turbulence. They not only adequately
suppress the small-scale flows, but also facilitate the kinetic energy transfer from
small to large scales and generate more accurate large-scale flows, including quasi-
2D and cyclonic structures.

Despite offering a large improvement, the results obtained using the new models
still show discrepancies in some aspects. Additional improvement of LES modeling
may be guided by the present results. Moreover, there exists a need to study more
complex flows (e.g., rotating stratified turbulence and channel flow subject to sys-
tem rotation), which are physically realizable and admit a quantitative comparison
with experimental results.
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