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1. INTRODUCTION

Computer simulations of three-dimensional turbulent flows which ex-
plicitly account for the motions of eddies ranging in size down to the inertial
subrange are now possible. In most cases of interest, motions on the order of
the dissipation length scale cannot be treated explicitly. Modifications of the
Navier-Stokes equations must then be introduced to simulate properly the
energy cascade. Considerable “damming up” of the turbulence energy in
the large scales would occur, for example, if the unmodified equations were
used with an energy-conserving finite-difference scheme on the advective
term.

One approach to the problem is to use an eddy viscosity to account for the
influence of the subgrid-scale motions on the large-scale fluctuations (Lilly,
1967). In this model, the energy cascade is then viewed solely as an energy
loss of the large-scales due to an artificial viscosity arising from subgrid-scale
motions. The advective term for the large-scale motions is unmodified.

In this paper, the derivation of smoothed or filtered momentum and
continuity equations for the large-scale, energy-containing eddies is reex-
amined. Noting that the large-scale motions vary in a nonnegligible way
over an averaging volume, we investigate a more accurate, modified advec-
tive term in the momentum equations for these motions. This term is non-
conservative and is shown to lead to significant energy extraction from the
large scales due to triple correlations of these motions. The subgrid-scale
Reynolds stress term is still present but plays a reduced role as far as the
energy cascade is concerned. Similar arguments are applied to the analysis
of large-scale fluctuations of a passive scalar.
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2. PROBLEM OF NUMERICAL SIMULATION

We consider an incompressible flow whose time evolution is given by the
Navier-Stokes and continuity equations for the velocity components u,(x, t),
i =1,2,3 and the pressure p(x, t):

¢ 0 1 "
(2.1) C.u‘ + — (wuy)) = — _f’_P + v Vi,

ot 0x; pOx; -
(2.2) ' éuy/ox; = 0.

These equations, along with appropriate initial and boundary conditions,
will yield the flow field for all later times (although for turbulent flows this
field is likely to be unstable with respect to small perturbations in the initial
or boundary conditions). Due to the wide range of length scales present in
real turbulent flows, however, the full numerical simulation of such flows is
not yet possible, in general. The required number of mesh points on a
three-dimensional grid is proportional to Re®* where Re is the Reynolds
number (Hirt, 1969). For Re = 50,000 about 10° mesh points would be
required to simulate all the turbulent eddies down to and including those
with a dissipation length scale. On the other hand, the present capability of
one of the largest available machines (ILLIAC IV) is about 10° mesh points.
The most ambitious simulation reported to date in terms of total number of
mesh points is a study by Orszag and Patterson (1972) of three-dimensional
homogeneous isotropic turbulence using approximately (32)* mesh points
in Fourier space. The Reynolds number based on Taylor microscale was
R; = 35, within the range of wind tunnel experiments.

In most situations, however, full simulations are not practical, or even
possible. On the other hand, most of the momentum transport and turbulent
diffusion is carried out by the large-scale energy-containing eddies. Ther-
efore, simulation of these large-scale fluctuations is often of great interest.
Hence, we turn to the problem of deriving momentum and continuity equa-
tions for these large-scale turbulent fluctuations.

3. FILTERED MOMENTUM AND CONTINUITY EQUATIONS

If £ (x) is a function containing all the scales we define, quite generally, the
large-scale or resolvable-scale component of f to be denoted fand given by a
convolution of f with a filter function G(x),

(3.1) 7(x) = f G(x — X')f(x') dx.

Integration is over the flow volume. Some examples of filters are shown in
Fig.1. The one shown in Fig. Ic corresponds to a truncated Fourier expan-
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sion with |k;| < m/A. The other two are more localized in the spatial var-
iables and are representative of finite-difference schemes based, for example,
on expansions in terms of piecewise continuous polynomials. The filter
shown in Fig. 1a was used by Lilly (1967).

Note that by integration by parts we find that

{82 - | of [ox; = &(J)/ex;,
if f vanishes on the boundaries. Filtering Egs. (2.1) and (2.2) therefore gives
it 8 12p

(3.3) = + F‘cj(“iuj = S5

+ v V1,

(3.4) o7i,/0x; = 0.

To avoid writing dynamical equations for ;‘—-I we must approximate it in
terms of combinations of the &, and their derivatives.

If we decompose u; into its resolvable-scale and subgrid-scale compon-
ents, u; = 1; + u;, then

= 1
(3-5) u"llj = “i"j = T,-j 4+ jl]“é,-j
Gj
-1/
(a)
X, = X!
-A/2| Ar2 AEs

6= /24 exp(-61x,-x;1%%)
(b)
x‘—x'i
2 sin(x(x;-x{)/A)
i '(Xi‘li)

(c)

N '

\/ \/ R

FI1G. 1. Possible spatial filters defining large-scale quantities with G = G, G, G,. The filters
of (a) and (b) have identical second moments. The filter of (c) is equivalent to the finite Fourier
expansion method.
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where
(36) 5= —('Ii,' == %’Iuéu)
(3.7) My = Wil + WG + wiuj.

The averaged momentum and continuity equations become

cu; 0 — o (7 1 oty; =
(38) ==l C..—(“il‘j) = (T‘(_,(:)_) + 3’)“‘) ) Eé + v VU

(39) . du/ox; = 0.

To proceed one must model t;; in terms of the , . The function 1, appearing
in Eq. (3.8) may be combined with p and therefore need not be calculated
explicitly.

The usual approach (Lilly, 1967) is to approximate

(3.10) Wy~ T,
(or to lump the difference into the definition of ;;) and model 7;; by an eddy
viscosity hypothesis,

cu; oOu;
3.11 EPREANG Ty el s 4 1)
Gl o (ij 2 6x,~)

where K is an eddy viscosity coefficient, variable in space and time.
Lilly (1967) has shown that if K is taken to be similar to an expression used
by Smagorinsky (1963),

(3.12) K = (ca) [6x,-(6x,+ 6x,-)]

where A is the mesh spacing (or width of the G function), then the resultant
energy dissipation of the large scales is consistent with the Kolmogorov
power spectrum. Furthermore, the constant ¢ is dependent only on Kolmo-
gorov’s universal constant a. Deardorff (1970) has used this approach to
simulate turbulent channel flow with some success but found that the eddy
viscosity constant ¢ had to be chosen somewhat lower than that calculated
by Lilly, otherwise the turbulence was excessively damped out (see also
Deardorfl, 1971).

In a recent simulation of an atmospheric boundary layer Deardorff (1973)
abandoned the above eddy viscosity model and resorted to developing dyna-
mical equations for the subgrid Reynolds’ stresses and other relevant subgrid
fluxes. The presence of a stably stratified layer apparently could not be
accommodated with the use of an eddy coefficient. Perhaps the use of the

modified or filtered advective term é(ui; i, )/0x;, i., avoiding the use of the
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approximation (3.10), would have remedied the situation. It is shown below
that the filtered term plays an important role in the energy extraction from
the large scales whereas the unfiltered term. é(mm;)/0x; is energy-conserving
up to finite-differencing errors. SN

The implications of the assumption i;i; = u;1; are illustrated in Fig. 2
This assumption is satisfied if the i remain constant over an averaging
volume (Fig. 2a). One might compensate by dealing with a subgrid compon-
ent u}, which is effectively larger than that obtained when the variation of T,
over an averaging volume is explicitly accounted for (Fig. 2b). In the former
case the modeling of the subgrid terms is clearly more critical. An excep-
tional case is the truncated Fourier expansion (filter of Fig. Ic) where the
difference between ;1t; and ;1 is identically zero in the dynamical equa-
tions for the large-scale flow. We comment further on this case in the next
section.

(a)

(b)

P

FiG. 2. Two possible definitions of the subgrid-scale component Uy

4. ENERGY Loss OF THE LARGE-SCALE TURBULENCE

In the above model. all the energy dissipation of the large scales is viewed
as a result of Reynolds stress of the subgrid-scale turbulence and modeled by
an eddy viscosity times the squared deformation tensor of the large-scale
low. However. a different mechanism appears to be responsible for a sub-
stantial portion of the large-scale dissipation arising from the fact that
Ta,-ﬁ,- — i;1t; is not generally negligible as discussed above.
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Assuming that the influence of the molecular viscosity term is negligible,
energy loss of the large scales will occur through the action of the nonlinear,
resolvable-scale and subgrid scale terms (i, 1; )/cx; and ¢t /cx;, respec-
tively. The rate of energy cascade due to the former we denote &g and to the
latter, g5 If € is the total loss rate, then

4.1) € = &ps + &Gs

Multiplying Eq. (3.8) by &; and volume averaging we find that
(4.2) ers = <T; &(H;11,)/8x;)

(4.3) &sgs = {U; 01;;/Cx;)

where { ) denotes volume averaging

(4.4) = V"‘J h(x) dx

We concentrate on the evaluation of egg. In terms of the triple correlation
tensor, defined by

(4.5) Sixj(€) = Cuy(x)w(x)uy(x + &),

(an overbar denotes a quantity corresponding to the filtered flow field ;) s
can be written as

: O
(46) &s = —[ G(E) 52 Sudl8) &
Because of the presence of the filter G, the behavior of S.ji only in the

domain |§| < A is important. We assume that the velocity fluctuations in
this range of scales are homogeneous and isotropic in which case Sijx(€) can

be written in terms of a single scalar function k(r) (r = |&|) (Hinze, 1959).
- & 4 dk\ &6l k. &
o = 3 { — _— 1U —_——0). 2J
(47) 3u,E) =1 [(L‘ r dr) Aot 25y
1 d(r*k) S &
ata e+ o)

where g is the filtered turbulence intensity
(4.8) 7* = <uu).

Performing the differentiations and contractions required by (4.6), we find
that

(49) as = —7° [ GE)T(]%]) &,
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where
(4.10) f=— 2 LY.
. P S ity re— <k,
2r2dr\ dr

For a spherically symmetric filter, (4.9) reduces to
(4.11) tgs = —4ng> j G(r) ] (r)? dr.
0

To proceed further we must obtain at least an approximate form for k(r).
This function is a scalar triple correlation having the basic definition

(4.12) k(r) = <wi(x)u,(x + 2,7))/3°.
From symmetry requirements and the fact that
<ui éu,/ox)y = %<&‘_‘?/axl> =0,
one can show that k has the small r expansion (Hinze, 1959),
kgr®  E¢wS
(4.13) IZ(,-):% _‘;T_,_...;

this yields for f(r) the expansion
(4.14) f(r) = 8Bkgr® + B + ---.

Assuming that the %; fluctuations include a portion of the inertial
subrange and the smallest scale in the subrange is ~ A, then &(r) is linear in
that subrange with a known coefficient (Kolmogorov, 1941),

(4.15) k(r) = —2er/15° (A<r<Ly)

where L, is the scale of the energy-containing eddies. The resultant behavior

of f(r) is
(4.16) Jir)=—¢/® (A<r<Ly).

Note that using the inertial subrange form of f(r) in (4.9) yields egs = &. This
is no accident. In fact 23/ (r) represents the advective term in the Karman-
Howarth equation (von Kirman and Howarth, 1938), a dynamical equation
for the correlation Q,(r) = <{ar(x)i(x + €,r)), and in the inertial subrange
of the filtered flow this term is solely responsible for the energy loss of Q,(r).
Thus 2¢f(r) = —2¢ for A < r < L,. Equation (4.15) then follows by using
(4.10).

The corrections to (4.16) for small r however will give ¢es < & This is
shown qualitatively in Fig. 3. The behavior indicated by curve A assumes
that the quadratic term $3K5r* dominates the small r behavior up to the
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-337(r) )

F1G. 3. Two possible interpolations of k(r) between known asymptotic forms.

inertial subrange asymptote. Unpublished calculations based on turbulence
as given by Burgers’ equation (Burgers, 1940, or see Burgers, 1948) (“ Burger-
lence ") suggest that k(r) will approach its asymptotic form mere quickly as
shown by curve B.

Furthermore, turbulence measurements in an atmospheric boundary
layer (McConnell, 1973) and an air jet (Clay, 1973) have shown that the
inertial subrange behavior of k(r) given by (4.15) persists down to about a
Kolmogorov length 5 whereas curve A assumes a lower bound on the linear
range of k(r) at =~ 5n.

Nevertheless, as a tentative lower bound to the amount of energy loss
attributable to egg we will use curve A for k(r). With the filter

(4.17) G(E) = [A7'(6/m)"]* exp(—6 | [*/A%),
(4.9) gives
(4.18) Ers = —23q°kgA?

plus a negligible contribution from the asymptotic form of f(r).
We relate kj; to skewness by noting that

(419) <(El-ll/axl)3> = <l~‘li.ll 531_{1/(:‘)(?)
83
=y
UC? ll.l@) <
= Z[}Em’

and therefore
(4.20) ers = —33<(00y/0x,)*>A?
= 335¢(T, /0x,)*)¥*A2,




ENERGY CASCADE IN LARGE-EDDY SIMULATIONS 245

where § is the skewness defined by

@ ()

Following Lilly (1967) we complete the calculation by relating
{(Cuy/0x,)*> to the Kolmogorov spectrum. In the initial range the energy
spectrum of turbulence is

(4.22) E(k) = ag?3k=58,

However, the filtering process will truncate the high wave number end of this
spectrum so that the spectrum of the filtered turbulence is

(4.23) E(k) = «e?k=513 | G(k) |2,
where G(k) is the Fourier transform of the filter function G(x),
(4.24) G(k) = [ e**G(x) dx.

Of particular interest is the integral
(4.25) j K2E(k) dk j [G(K)[? dQydn = — &z, V2>
0

o xTS<(€"_‘|/L-\"-"71)2>’

where again we have used isotropy in the final step. Combining (4.20), (4.23),
and (4.25), ey takes the form

(4.26) Ers = j—gs ﬁ—; J':kw dk j |G(k)[? %Jmala
For the Gaussian filter (4.17) we have
(4.27) G(k) = exp(—A%2/24)
- Using o = 1.62 (Wyngaard and Pao, 1972), we obtain
(4.28) egs = 0.498.

Experimentally determined values of skewness vary slightly, depending on
Reynolds number, from $=x 040 for wind-tunnel grid turbulence
(R; = 50-100) to S = 0.60-0.85 for atmospheric turbulence (R, ~ 10°-10%)
(Wyngaard and Pao, 1972). Thus, without more information on the beha-
vior of A(r) we obtain the tentative lower bound for ¢

(4.29) &gs < 0.3z + 0.1c.

The SGS term ¢14;/6x; must account for the remainder of the losses.
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As mentioned earlier, with the use of the truncated Fourier representation
u;u; has the same large-scale Fourier components as does w1, . Therefore,
for this case, :

(430) CRS = <ﬁ, 6(ﬁ l_l')//("x
= u; d(w;i;)/ex ;> = 0.

The interpretation is related to the fact that large-wave-number Fourier
modes need the assistance of small wave-number modes to transfer energy
from large scales to small scales. In the Fourier method the sharp cutoff in
wave-number space precludes such a transfer whereas the localized spatial

filters of Figs. 2a and 2b produce smooth, gradual filtering in wave-number
space which evidently allows for energy transfer to the subgrid scales.

5. TURBULENT DIFFUSION OF A PASSIVE SCALAR

If the numerical simulation is to include the large-scale fluctuations of a
passive scalar field y(r, t), one must consider the filtered equation of motion

(5.1) /ot + u; cy/ix; = kVH)

where. x is the diffusivity. Decomposing u; and y into large-scale and
subgrid-scale components gives for the convection term,

(5.2) u; 0Y/0x; = u; G/dx; + subgrid contributions

Analogous to the preceding results, the filtered large-scale convection term
on the right-hand side of (5.2) will produce a loss in scalar variance y due to
the mixed triple correlation {Y(x)u,(x)¥/(x + &,r)). This correlation is
cubic for small r (Corrsin, 1951) and linear (= yr/3) in the resolvable-scale
portion of the convective subrange. Again, the amount of scalar variance
dissipation due to the filtered large-scale convection term depends on the
extent to which this linearity penetrates into the small r regime.

6. CONCLUSIONS

Numerical simulation of all the scales of a turbulent flow, even at modest
Reynolds numbers, is generally not practical. However, most information of
interest can be obtained by simulating the motion of the large-scale, energy-
containing eddies. The large-scale fluctuations satisfy filtered or averaged
momentum and continuity equations. Averaging the nonlinear advection
term yields two terms. One is the Reynolds stress contribution from the
subgrid-scale turbulence and the other is the filtered advection term for the
large scales,

(“-'(Tﬁj)/(’,\‘j :
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A significant portion of the large-scale dissipation is provided by appro-
priate treatment of this term. In evaluating this term, the variations of
¢(@; ;)/cx; within an averaging volume defined by G(x) should be explicitly
accounted for. One obvious possibility is to represent ¢(u;i;)/Cx; as a
weighted average of the values of é(u;;)/0x; at neighboring grid points.
Another possibility is to use the Taylor expansion

(6.1) w(x') = Wy(x) + (x" = x) - Vii(x) + O(| x" — x?)

in the definition

(6.2) i, = j G(x — X Jiu(X'Jit,(x') dx.
with the result
.0l b TITE
(63) ) (am,- 4y ‘.”’)
0x; 0X; 0x,0x,
where 7y is the one-dimensional second moment of G,
(6.4) g = J it de. G(x, y, z) dy d-z.
Finally, an expansion of #;;(x") including O(|x — x’|)? terms, gives
i el - oy ot
(65) —ax—l— o~ a—xj il + im(ui“j) 2

Using the methods of the previous section, one can show that the approxi-
mation (6.3) would yield twice the ez determined for curve A, while (6.4)
gives the same value of gg.

The SGS term 0t;;/0x; must produce the remaining dissipation and
probably can be modeled by the eddy viscosity model of (3.11) and (3.12).
The value of the eddy coefficient in (3.12) will be somewhat smaller than that
calculated by Lilly (1967) (¢ = 0.17). Numerical experiments will probably
be required to obtain a satisfactory value.

Similar considerations apply to the simulation of large-scale fluctuations
of a passive scalar.
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