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One major drawback of the eddy viscosity subgrid-scale stress models used in large-eddy 
simulations is their inability to represent correctly with a single universal constant different 
turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the 
present work a new eddy viscosity model is presented which alleviates many of these 
drawbacks. The model coefficient is computed dynamically as the calculation progresses rather 
than input apriori. The model is based on an algebraic identity between the subgrid-scale 
stresses at two different filtered levels and the resolved turbulent stresses. The subgrid-scale 
stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and 
have the correct asymptotic behavior in the near-wall region of a turbulent boundary layer. 
The results of large-eddy simulations of transitional and turbulent channel flow that use the 
proposed model are in good agreement with the direct simulation data. 

1. INTRODUCTION 
In large-eddy simulations (LES) the effect of the large 

scales is directly computed, and only the small subgrid scales 
are modeled. Since small scales tend to be more isotropic 
than thelarge ones, it should be possible to parametrize them 
using simpler and more universal models than standard 
Reynolds stress models. Thus, most subgrid-scale (SCS) 
stress models are based on an eddy viscosity assumption. In 
the most commonly used model, developed by Smagor- 
insky,’ the eddy viscosity Y* is obtained by assuming that 
the small scales are in equilibrium, so that energy production 
and dissipation are in balance. This yields an expression of 
the form 

vy- = K’sA)*I~ t, (1) 
where A is the filter width (which is proportional to the grid 
size), C’s is the Smagorinsky constant, 13 [ = (23,,3,, ) ‘/* is 
the magnitude of large-scale strain-rate tensor 

(2) 

and iii is the large-scale velocity. 
Lilly* determined that, for homogeneous isotropic tur- 

bulence with cutoff in the inertial subrange and A equal to 
the grid size, C’s e-0.23. In the presence of mean shear, how- 
ever, this value was found to cause excessive damping of 
large-scale fluctuations, and in his simulation of turbulent 
channel flow, Deardorff3 used C, = 0.1 (also with filter 
width equal to grid size). A priori tests by McMillan et a1.4 
on homogeneous turbulence confirmed that C’s decreases 
with increasing strain rate. Mason and Callen however, 
found that the value C’s = 0.2 gave good results if the grid 
resolution was sufficiently fine, and concluded that values of 
Cs lower than 0.2 are required if the numerical resolution is 
insufficient. Their results, however, were not confirmed by 
Piomelli et aL6 who found the optimum value of Cs to be 
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around 0.1 (again assuming the filter width to be equal to the 
grid size) even with meshes much finer than those used by 
Mason and Callen.” It should be noted, however, that Ma- 
son and Callen” did not resolve the wall layer, while Piomelli 
et aLb did. 

Additional modifications to the Smagorinsky model 
were made in the near-wall region of plane channels to force 
the subgrid-scale stresses to vanish at the solid boundary. 
Moin and Kim,7 for example, used damping functions to 
account for near-wall effects. Piomelli et al.’ chose the 
damping function to ensure the proper asymptotic behavior 
for the SGS shear stresses near the wall, but found little dif- 
ference with the results obtained with the standard Van 
Driest damping’ used by Moin and Kim’ and others. 

Yakhot et aLa9 used a subgrid-scale model based on the 
renormalization group theory of Yakhot and Orszag” in the 
large-eddy simulation of channel flow. Although the stresses 
predicted by the model in its original formulation go to zero 
at the wall without requiring any damping function, Yakhot 
et al.” included an ad hoc factor to take into account the 
anisotropy of the small scales in the near-wall region. The 
asymptotic behavior of the stresses predicted by this model 
depends on the grid distribution in the wall-normal direc- 
tion; for the grids commonly used, an incorrect asymptotic 
behavior is obtained. 

Large-eddy simulations of transition to turbulence in 
boundary layers” and plane channel’” show that during the 
early stages of transition the Smagorinsky model predicts 
excessive damping of the resolved structures, leading to in- 
correct growth rates of the initial perturbations. To over- 
come this difficulty an additional empiricism was intro- 
duced in the form of an intermittency function which 
modified the Smagorinsky constant by effectively setting it 
to zero during the linear and early nonlinear stages of transi- 
tion, 

This briefsurvey of the existing literature indicates that, 
although modifications of the Smagorinsky model have been 
successfully applied to the LES of transitional and turbulent 
flows, it is not possible to model effectively with a single, 
universal constant the variety of phenomena present in the 
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flous examined. The ad hoc manner in which the SGS eddy 
viscosity has been extrapolated to the wall is far from desir- 
able. In addition the Smagorinsky model cannot account for 
energy flow from small scales to large scales (backscatter), 
which can be significant.” 

In this work a new, dynamic SGS stress model is pro- 
posed that attempts to overcome these deficiencies by locally 
calculating the eddy viscosity coefficient to reflect closely 
the state of the flow. This is done by sampling the smallest 
resolved scales and using this information to model the sub- 
grid scales. The model presented here requires a single input 
parameter and exhibits the proper asymptotic behavior near 
solid boundaries or in laminar flow without requiring damp- 
ing or intermittency functions. The model is also capable of 
accounting for backscatter. 

In the next section, the model will be presented and its 
characteristics discussed. The model was tested both apriori, 
taking advantage of existing direct numerical simulation 
(DNS) databases, andaposterioriusing the model in an LES 
calculation. The results of these tests will be discussed in Sec. 
III. Concluding remarks will be made in Sec. IV. 

II. MATHEMATICAL FORMULATION 
In large-eddy simulation, the large-scale quantities are 

defined by the convolution of the velocity and pressure fields 
with a filter function. For the purposes of this work we define 
two filtering operators: one is thegrid filterz, denoted by an 
overbar: 

y(x) = 
I 

f( x’)c( x,x’)dx’ (3) 

(where the integral is extended to the ent;re computational 
domain) while the other, the tea filter G, is denoted by a 
tilde: 

j-(x) = j-(x’)& x,x’)dx’; 
s 

(4) 

the filter width of the test filter is assumed to be larger than 
that of the grid filter (i.e., the test filter corresponds to a 
coarser mesh than the grid filter). Finally, let G = Gi?. 

By applying the grid filter to the dimensionless continu- 
ity and Navier-Stokes equations one obtains the filtered 
equations of motions 

(5) 

(6) 

In thefollowing,xorx, is thestreamwisedirection,yorx, is 
the direction normal to the walls (which are located at 
~7 = + l), and z or x3 is the spanwise direction; further- 
more, the distance from the nearest wall is denoted by JJ,~,. 
The effects of the small scales appear in the subgrid-scale 
stress term 

r,,= u,u, -ii,ii,, 
which must be m_odeled. 

(7) 

Now apply G to the equations of motion: the filtered 
Navier-Stokes equations become 

JT.. 1 a2ci --L+---, 
CYX, Re ax, 6’xj 

(8) 

where the subgrid-scale stress is now 
Tc = uyj - ;,Gj; (9) 

finally, consider the resolved turbulent stress -4p, defined as 
y, = -gj - S,Ej. (10) 

The resolved turbulent stresses are representative of the con- 
tribution to the Reynolds stresses by the scales whose length 
is intermediate between the grid filter width and the test 
filter width, i.e., the small resolved scales. The quantities 
given in (7), (9), and ( 10) are related by the algebraic rela- 
tionL4 

ytj = TJ - ?gY (11) 
which relates the resolved turbulent stress Yii, which can be 
calculated explicitly, to the subgrid-scale stresses at the test 
and grid levels, TO and rTil. 

The identity ( 11) can be exploited to derive more accu- 
rate SGS stress models by determining, for example, the val- 
ue of the Smagorinsky coefficient most appropriate to the 
instantaneous state of the flow. Assuming that the same 
functional form can be used to parametrize both T, and rii 
(the Smagorinsky model, for example), let M,, and mi, be 
the models for the anisotropic parts of T, and r,,: 

rij - (S,j/3)r,, --mu = - 2CK’IS [Sij, 
TO - (S,/3)T,, EM,, = - 2x’@ I&:,, 

where 

(12) 
(13) 

i$ =+-($+$), 151 =a, (14) 

his the characteristic filter width associated with G, and x is 
the filter width associated with z. Substitution of ( 12) and 
( 13) into ( 11) and contracting with sij gives 

2Yi,SlJ = - 2c(P@ lS,S;, - PI5 I5$,, j, (15) 
from which C(x,y,z,t) can be obtained in principle. The 
quantity in parentheses, however, can become zero, which 
would make Cindeterminate or ill-conditioned. Apriori tests 
in turbulent channel flow have shown this to be indeed the 
case. For the channel flow, therefore, it was assumed that C 
is only a function ofy and t. To this end, the average of both 
sides of (15) is taken over a plane parallel to the wall (indi- 
cated by ( )) to yield 

C(y,t) = - 1. L-c,%d) 
2 x2(lsl~mnsmn> -~2(I~I~p;,,sp,> 

; (16) 

the new dynamic eddy viscosity subgrid-scale stress model is 
then given by 

w,,m 
m, = 

(z/h)2(l~li?m,s;,,,> - (Is15pqspq) 
IS IS,. (17) 

In the present calculation, the sharp cutoff filter has been 
used as both test and grid filter. In finite difference calcula- 
tions the test-filtered flow quantities can be computed by 
spatial averaging the calculated large-scale variables over a 

1761 Phys. Fluids A, Vol. 3, No. 7, July 1991 German0 eta/. 1761 

Downloaded 28 Apr 2012 to 129.15.109.254. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



few grid cells, for example. In more general situations, more- 
over, the plane average should also be replaced with appro- 
priate local space and time averages. The model ( 17) implic- 
itly assumes similarity between the SGS stresses at the grid 
and test levels, which are modeled using the same functional 
expression, namely, the Smagorinsky model. 

A few remarks are in order regarding the properties and 
the character of the subgrid-scale stress model given by 
( 17). First, the model gives zero SGS stress everywhere -i;pr, 
vanishes (as long as the denominator remains finite). Such is 
the case in laminar flow or at solid boundaries. Furthermore, 
it is easy to show that in the near-wall region mij is propor- 
tional to the cube of t,he distance from the wally,, regardless 
of the choice of h or A. This is the correct asymptotic behav- 
ior for the ( 1,2) component of the subgrid-scale stress ten- 
sor, which, in this region, is the most significant one. To the 
authors’ knowledge, this is the only model that satisfies this 
property without the use of ad hoc damping functions. Final- 
ly, the use of ( 17) implies that the modeled subgrid-scale 
dissipation, esGs = m,zQ, is proportional to the average dis- 
sipation of the resolved turbulent stresses, ( L?,j,?Y >, which 
can be either positive or negative. Thus, the model does not 
rule out backscatter. In the present formulation backscatter 
is not localized and may (or may not) occur at every point in 
a plane; the use of local averaging in ( 15), however, would 
allow the model to provide localized backscatter as well. 
I -The only adjustable parameter in the model is the ratio 
A/A > 1. The resolved turbulent stresses calculated using 
small values of this ratio can be contaminated by numerical 
errors; on the other hand, large values of it imply that the 
stresses due to large energy-carrying structures are used to 
determine thz contribution of the subgrid scales. If the opti- 
mal value of A/A varies greatly from one flow to another, the 
applicability of the mode1 is reduced. In the next section, 
large-eddy simulations of transitional and turbulent channel 
flow are used to address this issue. 

Ill. RESULTS AND DISCUSSION 
A priori tests of the dynamic subgrid-scale stress model 

( 17) were carried out to determine the accuracy with which 
the model predicts the SGS stresses and dissipation. The 
tests were performed using the DNS database of Kim et~l.‘~ 
for turbulent channel flow, and that of Zang ef al. l6 for tran- 
sitional flow. Reynolds numbers are, respectively, 
Re = 3300 and 7900 (based on the centerline velocity U, 
and channel half-width S) for the turbulent case, and 
Re = 8000 for the transitional case (based on initial center- 
line velocity and channel half-width). 

The sharp cutoff filter was applied as both grid and test 
filter in the streamwise and spanwise directions. No explicit 
test filtering was applied in the normal direction. Two com- 
monly used definitions of the filter width were used: 

--- 
x”=A A A , 2 3, Z3=E,K2&, (18) 

and 
p=yq +x; .+q p=iT‘: +g +g, (19) 

where b, and & are the filter widths in each coordinate 
direction associated with aand E, respectively; E’, was taken 

I, .’  

‘I’.” -16 1 I 8 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 

‘, .’ 
*I’ _, 6 ‘,, ..: , I 9 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 
Y/6 

FIG. I. Plane-averaged subgrid-scale shear stress (T,* ) and dissipation 
(eSclg); Re = 3300 turbulent channel flow. A: exact;-: a = 2; ---: 
a = 4; *. . .:a = $. (a) Dissipation; (b) SGS shear stress. 

to ke equal to twice the grid spacing, Ax,, and vzrious values 
of A, were examined. In the following the ratio A,/& will be 
taken equal in all directions, and denoted by a (notice, how- 
ever, that no explicit filtering is applied in the wall-normal 
direction). 

The mean subgrid-scale shear stress ( r,2 ) and dissipa- 
tion (escs ) are compared with the modeled ones in Fig. 1 for 
various filter widths in the turbulent channel flow. Equation 
(19) was used to define the filter width. The choice a = 2 
was found to yield the best results. However, actual large- 
eddy simulations with the dynamic model appear to be very 
insensitive to a (see below). With this choice b corresponds 
to a wave number in the decaying region of the one-dimen- 
sional energy spectrum, while z represents a wave number in 
the hat region. In Fig. 2, the product Cx” is plotted as func- 
tion of the wall coordinate y+ = u,y,/~ [where 
u, = (r&p2 is the friction velocity, 7, is the wall shear, 
and p is the fluid density] ; the expected y + ’ behavior is evi- 
dent. At thechannel center CzO.023 when ( 18) is used; the 
square root of this value is 0.15, about 50% larger than the 
value of C, used by DeardorK3 When ( 19) is used, at the 
channel center Cz 7 X 10 - 4, which gives a value of 0.026 for 

10-s 

1 o-5 

& 10-7 
" 

1 o-9 

lo-” 

FIG. 2. Variation ofCx* [defined in Eq. ( 17) ] with distance from the wall; 
Re = 33M) turbulent channel Row, a = 2.-: CT’ obtained using ( 18); 
---:C~20btainedusing(19);~~*~:C~*-y+’. 
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FIG. 3. Plane-averaged subgrid-scale dissipation (es&; transitional flow, 
t = 176. A: exact:-: a = 2. 

the Smagorinsky constant. The issue of the sensitivity of the 
numerical results to the choice of filter width and of a will be 
addressed later. The model was also tested in transitional 
flow for a = 2 (Fig. 3). The SGS dissipation predicted by 
the Smagorinsky model for this case is many orders of mag- 
nitude larger, and peaks much closer to the wall than the 
exact one.’ ’ 

To further determine the accuracy of the dynamic SGS 
model ( 17 ), it was also tested a posteriori in the LES of tran- 
sitional and fully developed turbulent channel flow. Initial 
conditions consisted of the parabolic mean flow, on which a 
2-D Tollmien-Schlichting (TS) mode of 2% amplitude and 
a 3-D TS mode of 0.02% amplitude were superimposed. The 
initial conditions and Reynolds number matched those of 
the direct simulation of Ref. 16. The governing equations 
(5) and (6) were integrated in time using a pseudospectral 
Fourier-Chebyshev collocation method.” Both filter 
widths ( 18) and ( 19) were used; the final results were insen- 
sitive to this choice, so only those obtained using Eq. (18) 
will be presented. The ratio a = 2 was chosen. At the initial 
stages 8 X 49 X 8 grid points were used; the mesh was then 
progressively refined up to 48 X 65 X 64 points; the dimen- 
sions of the computational domain were 2?rS in the stream- 
wise direction and 41rS/3 in the spanwise direction. Periodic 
boundary conditions were applied in the streamwise and 
spanwise directions; no-slip conditions were applied at the 
walls. 

The time development of the mean wall shear stress 
(r,,,) is compared in Fig. 4 with the DNS results of Ref. 16 
and with the results of the LES of Ref. 12, which used a 
Smagorinsky model including Van Driest damping and an 

1.6 
“0 
r; 1.2 
A 
b* 0.8 
V 

0.0 
0 50 100 150 200 250 300 

FIG. 4. Time development of the plane-averaged wall shear stress (T,) in 
Re = 8ooO transitional channel Row. A: DNS;“‘-: present results; . . . .: 
LES.” 

x00.16 

2 0.12 
-A N 0.08 
-2 
v 0.04 

0.00 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 

_.-_ L 1 
>“0.16 

\ 0.12 

: 0.08 

: 0.04 

0.00) I I I , 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 
0.20, 

o.ooJ , I 1 I 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 

Y/6 

FIG. 5. Plane-averaged rms turbulence intensities (u”*) “* in Re = 8000 
transitional channel flow. A: Filtered DNS;16 -: present calculation; 
....: LES.” (a) t= 176; (b) t = 200; (c) f = 220. 

ad hoc intermittency function; the present results compare 
very well with the finely resolved DNS. A coarse direct sim- 
ulation which can adequately resolve the early stages of tran- 
sition (up to tr 170) cannot predict the drag crisis (Fig. 4) 
and the breakdown process.r2 With the present model, on 
the other hand, the predicted peak wall stress is within 3% of 
the DNS result. The root-mean-square fluctuation of 
(u”~)“’ (where uj’ = Zi - Ui and Vi = (iii)) and the 
Reynolds shear stress ( u”u”), shown in Figs. 5 and 6, are in 
fair agreement with the DNS results. The DNS results have 
been filtered using the same filter employed in the LES cal- 
culation. Discrepancies between the LES and DNS results at 
late stages of transition may be due to the fact that, at these 
times, slight differences in the prediction of the onset of tran- 
sition may result in significant differences in the instanta- 
neous fields. The capability of the model to predict average 
backscatter is evidenced by the fact that for t< 185 the eddy 
viscosity was negative for significant regions of the channel. 

Once fully developed turbulent flow was achieved, sta- 
tistics were accumulated. The Reynolds number of the tur- 
bulent flow was Re = 6 100 based on centerline velocity and 
channel half-width. The mean velocity profile is shown in 
Fig. 7, normalized by the friction velocity U, and by the bulk 
velocity U,, 

u, =1 2s s 66 (~)d~. (20) 

An inadequate resolution of the wall layer results in a low 
value of wall stress that is reflected in a high value of the 
intercept of the logarithmic layer in Fig. 7(b). The overall 
agreement of the LES results with the DNS data is fairly 
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FIG. 6. Plane-averaged Reynolds stress (u”u”) in Re = 8000 transitional 
channel flow. A: Filtered DNS;16-: present calculation; * * * *: LES.lL 
(a) t= 176;(b) t=200, (c) t=220. 

good. The turbulence intensities (uj”) “2 normalized by the 
friction velocity U, are shown in Fig. 8. The DNS results 
have been filtered using the same filter employed in the LES 
calculation, In general, the dynamic model gives more accu- 
rate results than the Smagorinsky model used by Piomelli 
and Zang. I2 The peak of the streamwise turbulent kinetic 
energy occurs near y + = 12, a value also obtained by experi- 

FIG. 8. Turbulenceintensities (u;‘)“~ in fully developed turbulent channel 
flow. A: Re = 7900 filtered DNS;‘5 0: Re = 3300 filtered DNS;” -: 
present calculation; f.*.: LES”. (a) u; (b) u; (c) w. 

ments and numerical simulations; the mean streak spacing 
was found to be/i + = 140, somewhat larger than the estab- 
lished value of 100, which is also expected of large-eddy sim- 
ulations The skewness and flatness factors of the three ve- 
locity components are shown in Fig. 9. They compare fairly 
well with the DNS results. Note that in contrast to turbu- 
lence intensities, higher-order statistics from LES are com- 
pared with unfiltered DNS results. 

To investigate the effect of the parameter cy on the nu- 
merical results we performed a calculation in which the val- 

20 

p '*O 
(0) 

15 + ' -5- 
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0.5 h A 
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FIG. 7. Mean velocity profile in fully developed turbulent channel flow. A: FIG. 9. Skewness and flatness factors of U, in fully developed turbulent 
Re = 7900 filtered DNS;‘s c7: Re = 3300 filtered DNS:15 -: present cal- channel Row. -: t4’; f .: u”;- --: w” from the present calculation. c1: 
culation; . . .: LES”. (a) Wall coordinates; (b) global coordinates. u”; A: v”; 0:ru” from Re = 3300 DNS.15 (a) Skewness; (b) flatness. 
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ue a = 4 was used. This amounts to changing the coefficient 
of the first term in the denominator of Eq. ( 17) by almost a 
factor of 4. The results were found to be very insensitive to 
this parameter: differences in the mean and rms velocities 
were less than 3%; the wall stresses differed by less than 6%. 
The maximum resolved shear stress was larger by approxi- 
mately 4% in the calculation with a = 2, and the subgrid 
scale contribution smaller by the same amount. The insensi- 
tivity of the large-eddy simulation results to the value of a is 
contrary to one’s expectations from the apriori tests (Figs. 1 
and 3) and casts some doubt on the utility of a priori tests in 
providing quantitative data for LES. 

IV. CONCLUDING REMARKS 
A new eddy viscosity subgrid-scale stress model has 

been presented in which the smallest resolved scales are dy- 
namically tested to predict the behavior of the subgrid scales. 
This model is based on the algebraic identity ( 11) between 
the resolved turbulent stresses and the subgrid-scale stresses 
obtained using two filters, the grid filter and the test filter. 
The model coefficient is obtained dynamically as the calcula- 
tions progress. This procedure exploits the spectral informa- 
tion on the energy content of the smallest resolved scales 
provided by LES calculations to dynamically adjust the 
model. The only input to the model is the ratio of test filter 
width to grid filter width, a. Among the useful properties of 
the model is its proper asymptotic behavior near the wall 
without the use of ad hoc damping functions. 

Large-eddy simulations of transitional and fully devel- 
oped turbulent channel flow were also carried out. The re: 
sults were in good agreement with those of direct simula- 
tions, and better than those of LES that used the 
Smagorinsky model with ad hoc damping and intermittency 
functions. Doubling the value of a did not affect the numeri- 
cal results significantly. 

Investigation of the properties of this model when the 

box filter is employed is desirable. The sensitivity of the re- 
sults to the choice of a should also be further investigated in 
flow configurations much different from those studied here. 
Finally, the use of local space and time averages instead of 
the plane average used to obtain (17) should be attempted. 
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