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A methodology termed the ‘‘filtered density function’’ ~FDF! is developed and implemented for
large eddy simulation ~LES! of chemically reacting turbulent flows. In this methodology, the effects
of the unresolved scalar fluctuations are taken into account by considering the probability density
function ~PDF! of subgrid scale ~SGS! scalar quantities. A transport equation is derived for the FDF
in which the effect of chemical reactions appears in a closed form. The influences of scalar mixing
and convection within the subgrid are modeled. The FDF transport equation is solved numerically
via a Lagrangian Monte Carlo scheme in which the solutions of the equivalent stochastic differential
equations ~SDEs! are obtained. These solutions preserve the Itô-Gikhman nature of the SDEs. The
consistency of the FDF approach, the convergence of its Monte Carlo solution and the performance
of the closures employed in the FDF transport equation are assessed by comparisons with results
obtained by direct numerical simulation ~DNS! and by conventional LES procedures in which the
first two SGS scalar moments are obtained by a finite difference method ~LES-FD!. These
comparative assessments are conducted by implementations of all three schemes ~FDF, DNS and
LES-FD! in a temporally developing mixing layer and a spatially developing planar jet under both
non-reacting and reacting conditions. In non-reacting flows, the Monte Carlo solution of the FDF
yields results similar to those via LES-FD. The advantage of the FDF is demonstrated by its use in
reacting flows. In the absence of a closure for the SGS scalar fluctuations, the LES-FD results are
significantly different from those based on DNS. The FDF results show a much closer agreement
with filtered DNS results. © 1998 American Institute of Physics. @S1070-6631~98!01402-0#

I. INTRODUCTION

Over the past 30 years since the early work of
Smagorinsky,1 significant efforts have been devoted to large
eddy simulation ~LES! of turbulent flows.2–12 The most
prominent model has been the Smagorinsky eddy viscosity
closure which relates the unknown subgrid scale ~SGS! Rey-
nolds stresses to the local large scale rate of flow strain.13
This viscosity is aimed to provide the role of mimicking the
dissipative behavior of the unresolved small scales. The ex-
tensions to ‘‘dynamic’’ models14,15 have shown some im-
provements. This is particularly the case in transitional flow
simulations where the dynamic evaluations of the empirical
model ‘‘constant’’ result in ~somewhat! better predictions of
the large scale flow features.

A survey of combustion literature reveals relatively little
work in LES of chemically reacting turbulent flows.7,16 It
appears that Schumann17 was one of the first to conduct LES
of a reacting flow. However, the assumption made in this
work simply to neglect the contribution of the SGS scalar
fluctuations to the filtered reaction rate needs to be justified
for general applications. The importance of such fluctuations
is well recognized in Reynolds averaged procedures in both
combustion18–20 and chemical engineering21–24 problems.
Therefore, it is natural to believe that these fluctuations are

also important in LES. McMurtry et al.,25,26 Sykes et al.,27
Liou et al.,28 Menon et al.,29 Boris et al.,30 Fureby et al.,31,32
Cook et al.,33,34 Mathey and Chollet,35 Branley and Jones36
and others provide several means of conducting LES of tur-
bulent reacting flows.

Modeling of scalar fluctuations in Reynolds averaged
methods has been the subject of broad investigations since
the pioneering work of Toor.37 An approach which has
proven particularly useful is based on the probability density
function ~PDF! or the joint PDF of scalar quantities.38–41 The
systematic approach for determining the PDF is by means of
solving the transport equation governing its evolution.42 In
this equation, the effects of chemical reaction appear in a
closed form; this constitutes the primary advantage of the
PDF schemes in comparison to other statistical procedures.
The use of PDF for LES was suggested by Givi7 and its first
application is due to Madnia and Givi.43 In this work, the
Pearson family of distributions are assumed to characterize
PDF of SGS scalars in homogeneous flows under chemical
equilibrium conditions. This procedure was also used by
Cook and Riley.44 The extension of assumed PDF methods
for LES of non-equilibrium reacting shear flows is reported
by Frankel et al.45 While the generated results are encourag-
ing, they do reveal the need for more systematic schemes in
which the transport of the PDF of SGS scalar quantities are
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considered. Pope16 introduced the concept of ‘‘filtered den-
sity function’’ ~FDF! which is essentially the PDF of SGS
scalar variables. With a formal mathematical definition of the
FDF, Pope16 demonstrates that the effects of chemical reac-
tion appear in a closed form in the FDF transport, thus mak-
ing it a viable candidate for LES of chemically reacting
flows. Gao and O’Brien46 develop a transport equation for
the FDF and offer suggestions for modeling of the unclosed
terms in this equation.

The objective of the present work is to further demon-
strate the applicability of the FDF and to provide results
based on its implementation for LES of chemically reacting
turbulent flows. Only the FDF of scalar quantities is consid-
ered; probability treatment of the subgrid velocity fluctua-
tions is postponed for future work.

II. FORMULATION

We consider an incompressible ~unit density!, isother-
mal, turbulent reacting flow involving Ns species. For the
mathematical description of this flow, the primary transport
variables are the velocity vector ui(x,t) (i51,2,3), the pres-
sure p(x,t), and the species’ mass fractions fa(x,t) (a
51,2, . . . ,Ns). The equations which govern the transport of
these variables in space (xi) and time (t) are

]ui
]xi

50, ~1!

]u j
]t 1

]uiu j
]xi

52
]p
]x j

1
]t i j
]xi

, ~2!

]fa

]t 1
]uifa

]xi
52

]Ji
a

]xi
1va , ~3!

where va(x,t)[v̂a(F(x,t)) denotes the chemical reaction
term for species a, and F[@f1 ,f2 , . . . ,fNs# denotes the
scalar array. Assuming a Newtonian flow with Fick’s law of
diffusion, the viscous stress tensor t i j and mass flux Ji

a are
represented by

t i j5nS ]ui
]x j

1
]u j
]xi

D , Ji
a52G

]fa

]xi
, ~4!

where n is the fluid viscosity and G is the diffusion coeffi-
cient, G5n/Sc, and Sc is the molecular Schmidt number.

Large eddy simulation involves the use of the spatial
filtering operation47

^ f ~x,t !&L5E
2`

1`

f ~x8,t !G ~x8,x!dx8, ~5!

where G denotes the filter function, ^ f (x,t)&L represents the
filtered value of the transport variable f (x,t), and f 85 f
2^ f &L denotes the fluctuations of f from the filtered value.
We consider spatially and temporally invariant and localized
filter functions, thus G (x8,x)[G(x82x) with the
properties,47 G(x)5G(2x), and *2`

` G(x)dx51. More-
over, we only consider ‘‘positive’’ filter functions as defined
by Verman et al.48 for which all the moments *2`

` xmG(x)dx
exist for m>0. The application of the filtering operation to
the transport equations yields

]^ui&L
]xi

50, ~6!

]^u j&L
]t 1

]^ui&L^u j&L
]xi

52
]^p&L
]x j

1
]^t i j&L

]xi
2

]Ti j
]xi

, ~7!

]^fa&L
]t 1

]^ui&L^fa&L
]xi

52
]^Ji

a&L
]xi

2
]Mi

a

]xi
1^va&L ,

~8!

where Ti j5^uiu j&L2^ui&L^u j&L and Mi
a5^uifa&L

2^ui&L^fa&L denote the subgrid stress and the subgrid mass
flux, respectively.

III. CLOSURE STRATEGY

In LES of non-reacting flows the closure problem is as-
sociated with3 Ti j5^uiu j&L2^ui&L^u j&L and Mi

a5^uifa&L
2^ui&L^fa&L . In reacting flows, an additional model is re-
quired for ^va&L . Here, modeling of ^va&L is the subject of
the probability formulation as described in the next section.
For the former two, we make use of currently available clo-
sures which are well-established in non-reacting flows. The
subgrid stress is modeled via

Ti j2~d i j/3!Tkk522n t^Si j&L , ~9!

where ^Si j&L is the resolved strain rate tensor and n t is the
subgrid viscosity. We use two closures to represent this vis-
cosity. The first is the same as that in the conventional Sma-
gorinsky closure3

n t5CsDG
2 A^Si j&L^Si j&L, ~10!

where DG is the filter size and Cs is an empirical constant.
The drawbacks of this closure are well-recognized.49,50 In an
attempt to overcome some of these drawbacks, we also make
use of a second closure in which the subgrid viscosity is
determined based on the modified subgrid kinetic energy

n t5CkDGAu^ui*&L^ui*&L2^^ui*&L&L8^^ui*&L&L8u, ~11!

where ui*5ui2Ui and Ui is a reference velocity in the xi
direction. The subscript L8 denotes the filter at the secondary
level which has a characteristic size ~denoted by DG8! larger
than that of grid level filter. This model is essentially a modi-
fied version of that proposed by Bardina et al.,51 which uti-
lize equal sizes for the grid and secondary filters. We refer to
this as the modified kinetic energy viscosity ~MKEV! clo-
sure.

A similar model is used for the closure of the subgrid
mass fluxes52

Mi
a52G t

]^fa&L
]xi

, ~12!

where G t5n t /Sct , and Sct is the subgrid Schmidt number
and is assumed constant.
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IV. FILTERED DENSITY FUNCTION „FDF…
The key point in this formulation is to consider the scalar

fluctuations of the underlying scalars’ array F(x,t) in a
probabilistic manner. For that, we define the ‘‘filtered den-
sity function’’ ~FDF!, denoted by PL , as16

PL~C;x,t ![E
2`

1`

%@C,F~x8,t !#G~x82x!dx8, ~13!

%@C,F~x,t !#5d@C2F~x,t !#[ )
a51

Ns

d@ca2fa~x,t !# ,

~14!

where d denotes the delta function and C denotes the com-
position domain of the scalar array. The term %@F2C~x,t!#
is the ‘‘fine-grained’’ density,39,40 and Eq. ~13! implies that
the FDF is the spatially filtered value of the fine-grained
density. Thus, PL gives the density in the composition space
of the fluid around x weighted by the filter G . With the
condition of a positive filter kernel,48 PL has all the proper-
ties of the PDF.40

For further developments, it is useful to define the ‘‘con-
ditional filtered value’’ of the variable Q(x,t) by

^Q~x,t !uC&L[
*2`

1`Q~x8,t !%@C,F~x8,t !#G~x82x!dx8
PL~C;x,t ! ,

~15!

where ^aub&L denotes the filtered value of a conditioned on
b. Equation ~15! implies

~i! For Q~x,t !5c , ^Q~x,t !uC&L5c , ~16!

~ii! For Q~x,t ![Q̂~F~x,t !!, ^Q~x,t !uC&L5Q̂~C!, ~17!

~iii! Integral property: ^Q~x,t !&L

5E
2`

1`

^Q~x,t !uC&LPL~C;x,t !dC, ~18!

where c is a constant, and Q̂(F(x,t))[Q(x,t) denotes the
case where the variable Q can be completely described by
the compositional variable F(x,t). From these properties it
follows that the filtered value of any function of the scalar
variables ~such as the reaction rate! is obtained by integration
over the composition space

^Q~x,t !&L5E
2`

1`

Q̂~C!PL~C;x,t !dC. ~19!

To develop a transport equation for the FDF, the time-
derivative of Eq. ~13! is considered

]PL~C;x,t !
]t 52E

2`

` ]fa~x8,t !
]t

]%@C,F~x8,t !#
]ca

3G~x82x!dx8

52
]

]ca
E

2`

` ]fa~x8,t !
]t

3%@C,F~x8,t !#G~x82x!dx8, ~20!

where the summation convention applies to the species suf-
fix, a. This combined with Eq. ~15! yields

]PL~C;x,t !
]t 52

]

]ca
F K ]fa

]t UCL
L
PL~C;x,t !G . ~21!

Substituting Eq. ~3! into Eq. ~21! yields

]PL~C;x,t !
]t 5

]

]ca
H F K ]uifa

]xi
UCL

L
1K ]Ji

a

]xi
UCL

L

2^v̂a~F!uC&LGPL~C;x,t !J ~22!

in which the convective term can be represented in the form

]

]Ca
F K ]uifa

]xi
UCL

L
PL~C;x,t !G

52
]^uiuC&LPL~C;x,t !

]xi
. ~23!

The unclosed nature of convection is denoted by the condi-
tional filtered value of the velocity which is further decom-
posed into resolved and subgrid scale components. It is use-
ful to adopt the decomposition

^uiuC&LPL5^ui&LPL1@^uiuC&L2^ui&L#PL , ~24!

so that Eq. ~21! can be expressed as

]PL

]t 1
]^ui&LPL

]xi
52

]@^uiuC&L2^ui&L#PL

]xi

1
]

]ca
F K ]Ji

a

]xi
UCL

L
PLG

2
]@v̂a~C!PL#

]ca
. ~25!

This is an exact transport equation for the FDF and is similar
to that presented by Gao and O’Brien.46 The last term on the
right hand side of this equation is due to chemical reaction
and is in a closed form. The second term on the left hand
side represents the filtered convection of the FDF in physical
space and is also closed ~provided ^ui&L is known!. The un-
closed terms are associated with the first term on the right
hand side denoting the effects of unresolved subgrid scale
convection, and the second term on the right hand side rep-
resenting the influence of molecular diffusion.

The subgrid convective flux is modeled via

@^uiuC&L2^ui&L#PL52G t
]PL

]xi
. ~26!

The advantage of the decomposition ~Eq. ~24!! and the sub-
sequent model ~Eq. ~26!! is that they yield results similar to
that in conventional LES for the first moment of the FDF.
The first moments corresponding to Eqs. ~24! and ~26! are

^uifa&L5^ui&L^fa&L1@^uifa&L2^ui&L^fa&L# , ~27!

@^uifa&L2^ui&L^fa&L#52G t
]^fa&L

]xi
, ~28!
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respectively. The term in brackets in Eq. ~27! is the general-
ized scalar flux in the form considered in conventional LES
~Ref. 14! as pointed out by Gao and O’Brien.46 Conse-
quently, Eq. ~28! becomes identical to Eq. ~12!.

The closure for the conditional subgrid diffusion is based
on the linear mean square estimation ~LMSE! ~Refs. 39, 53!
model, which is also known as the IEM ~Ref. 54! ~interaction
by exchange with the mean! closure. The model involves the
decomposition of the diffusion term in Eq. ~25!,

]

]ca
F K 2

]

]xi
S G

]fa

]xi
D UCL

L
PLG

5
]

]xi
S G

]PL

]xi
D2

]2

]ca]cb
F K G

]fa

]xi
]fb

]xi
UCL

L
PLG .

~29!

The first term on the right hand side of this equation denotes
the effects of molecular diffusion in spatial transport of the
FDF. The second term represents the dissipative nature of
subgrid scalar mixing. The LMSE model suggests

]2

]ca]cb
F K G

]fa

]xi
]fb

]xi
UCL

L
PLG

52
]

]ca
@Vm~ca2^fa&L!PL# , ~30!

where Vm is the ‘‘frequency of mixing within the subgrid’’
which is not known a priori. Analogous to the procedures in
Reynolds averaged methods, this frequency can be related to
the subgrid diffusion coefficient and the filter length: Vm
5CV(G1G t)/DG

2 . The second moment of Eq. ~30! provides
an expression for the total subgrid scalar dissipation

ea52G K ]f~a!

]xi
]f~a!

]xi L
L
52Vm~^f~a!

2 &L2^f~a!&L
2 !,

~31!

where subscripts in parentheses are excluded form the sum-
mation convention. With the closures given by Eqs. ~26! and
~30!, the modeled FDF transport equation is

]PL

]t 1
]@^ui&LPL#

]xi
5

]

]xi
F ~G1G t!

]PL

]xi
G

1
]

]ca
@Vm~ca2^fa&L!PL#

2
]@v̂a~C!PL#

]ca
. ~32!

This equation may be integrated to obtain transport equations
for the SGS moments. The equation for the first subgrid mo-
ment, ^fa&L , and the generalized subgrid variance, sa

5^f (a)
2 &L2^f (a)&L

2 are

]^fa&L
]t 1

]^ui&L^fa&L
]xi

5
]

]xi
~G1G t!

]^fa&L
]xi

1^va&L ,

~33!

]sa

]t 1
]^ui&Lsa

]xi
5

]

]xi
F ~G1G t!

]sa

]xi
G22Vmsa

12~G1G t!F]^f~a!&L
]xi

]^f~a!&L
]xi

G
12~^f~a!v~a!&L2^f~a!&L^v~a!&L!.

~34!
These equations are identical to those which can be derived
by filtering Eq. ~3! directly, and adopting Eqs. ~12! and ~31!
for the subgrid flux and dissipation. In such direct moment
closure formulation, however, the terms involving ^va&L re-
main unclosed. It is observed that the modeled FDF equation
~Eq. ~32!! is similar in form to the standard modeled equa-
tion for the joint PDF of composition.40

V. MONTE CARLO SOLUTION OF THE FDF

The solution of the FDF transport equation ~Eq. ~32!!
provides all the statistical information pertaining to the scalar
variable F(x,t). This equation can be solved most effec-
tively via the Monte Carlo scheme. In PDF methods the
Monte Carlo schemes can be utilized in both Eulerian55 and
Lagrangian40,56 contexts. Thus, it is expected that both of the
procedures can be potentially employed for the solution of
the FDF. In the Eulerian Monte Carlo scheme, the FDF is
represented by an ensemble of computational elements ~or
particles! at ‘‘fixed’’ grid points. These elements are trans-
ported in the ‘‘physical space’’ by the combined actions of
resolved scale convection and diffusion ~molecular and sub-
grid!. In addition, transport in the composition space occurs
due to chemical reaction and subgrid mixing. Prior to this
work, the Eulerian Monte Carlo method was implemented.
Expectedly, the results were not encouraging. The major dif-
ficulty with the Eulerian formulation lies in the numerical
implementation of the resolved scale convection. The nu-
merical implementation via a first order accurate upwind
scheme was shown to produce excessive artificial diffusion
errors. While such errors can be tolerated in PDF methods ~at
least for some flows!, they degrade the LES results. In some
cases the numerical errors become significantly larger than
the subgrid and molecular diffusions.

A remedy for the problem noted above is to divorce
from the Eulerian discretization and to invoke the Monte
Carlo solver in a ‘‘grid free’’ Lagrangian manner. The ad-
vantages of Lagrangian numerical methods in reducing the
amount of numerical diffusion are well-recognized.57–62 The
basis of the Lagrangian solution of the FDF transport equa-
tion relies upon the principle of equivalent systems.40,56 Two
systems with different instantaneous behaviors may have
identical statistics and satisfy the same FDF transport equa-
tion. In the Lagrangian Monte Carlo procedure each of the
particles obeys certain equations which govern its transport.
These particles undergo motion in the physical space by con-
vection due to the filtered mean flow velocity, and diffusion
due to molecular and subgrid diffusivities. The general dif-
fusion process is represented in a stochastic manner by the
following stochastic differential equation ~SDE! ~Refs. 40,
63, 64!,
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dXi~ t !5Di~X~ t !,t !dt1E~X~ t !,t !dWi~ t !, ~35!

where Xi is the Lagrangian position of a stochastic particle,
Di and E are known as the ‘‘drift’’ and ‘‘diffusion’’ coeffi-
cients, respectively, and Wi denotes the Wiener-Lévy
process.65 A comparison of the Fokker-Plank equation cor-
responding to Eq. ~35! with the FDF transport equation ~32!
determines the appropriate specification of the coefficients to
be

E[A2~G1G t!, Di[^ui&L1
]~G1G t!

]xi
. ~36!

Thus the SDE which represents the spatial transport of the
FDF is

dXi~ t !5F ^ui&L1
]~G1G t!

]xi
Gdt1@2~G1G t!#

1/2dWi .

~37!
The compositional makeup of the particles evolves simulta-
neously due to the actions of subgrid mixing and reaction

dfa
1

dt 52Vm~fa
12^fa&L!1va , ~38!

where fa
15fa(Xi(t),t) denotes the scalar value of the par-

ticle with the Lagrangian position vector Xi .
In the numerical implementation, the FDF is represented

by an ensemble of Monte Carlo particles, each with a set of
scalars fa

(n)(X(n)(t),t) and Lagrangian position vector X(n).
Numerically, a splitting operation is employed in which the
transport in the physical and the compositional domains are
treated separately. The simplest means of simulating Eq. ~37!
is via the Euler-Maruyamma approximation66

Xi
n~ tk11!5Xi

n~ tk!1Di
n~ tk!Dt1En~ tk!~Dt !1/2j i

n~ tk!,
~39!

where Di
n(tk)5Di(X(n)(tk),t), En(tk)5E(X(n)(tk),t) and

j i
(n) is a random variable with the standard Gaussian PDF.
This formulation preserves the Markovian character of the
diffusion process67–69 and facilitates affordable computa-
tions. Higher order numerical schemes for solving Eq. ~37!
are available,66 but one must be cautious in using them for
LES since the diffusion term in Eq. ~35! depends on the
stochastic process X(t). The numerical scheme must pre-
serve the Itô-Gikhman70,71 nature of the process. The coeffi-
cients Di and E require the input of the filtered mean veloc-
ity and the diffusivity ~molecular and subgrid eddy!. These
are provided by the solution of Eqs. ~6!–~12! by a finite
difference LES ~as described below! on a fixed grid and then
interpolated to the particle location.

The compositional values are subject to change due to
subgrid mixing and chemical reaction. Equation ~38! may be
integrated numerically to simulate these effects simulta-
neously. Alternately, this equation is treated in a split man-
ner. This provides an analytical expression for the subgrid
mixing. Subsequently, the influence of chemical reaction is
determined by evaluating the fine grained reaction rates va

n

and modifying the composition of the elements. The imple-
mentation of the SGS mixing and chemical reaction requires
the filtered mean values of the scalars. These mean values

~and other higher moments of the FDF! at a given point are
estimated by consideration of particles within some volume
centered at the point of interest. Effectively, this finite vol-
ume constitutes an ‘‘ensemble domain’’ characterized by the
length scale DE ~not to be confused with DG! in which the
FDF is represented discretely by stochastic particles. This is
necessary as, with probability one, no particles will coincide
with the point as considered.56 Here, a box of size DE is used
to construct the ensemble mean values at the finite difference
nodes. These values are then interpolated to the particle po-
sitions. Since the mixing model only requires the input of the
filtered scalar value, and not its derivative, this volume av-
eraging procedure is sufficient. However, from the numerical
standpoint, determination of the size of the ensemble domain
is an important issue. Ideally, it is desired to obtain the sta-
tistics from the Monte Carlo solution when the size of
sample domain is infinitely small ~i.e., DE!0! and the num-
ber of particles within this domain is infinitely large. With a
finite number of particles, if DE is small there may not be
enough particles to construct the statistics. A larger ensemble
domain decreases the statistical error, but may increase the
dispersion error which manifests itself in ‘‘artificially dif-
fused’’ statistical results. This compromise between the sta-
tistical accuracy and dispersive accuracy as pertaining to La-
grangian Monte Carlo schemes implies that the optimum
magnitude of DE cannot, in general, be specified a priori.40
This does not diminish the capability of the procedure, but
exemplifies the importance of the parameters which govern
the statistics.

The LES of the hydrodynamic variables, which also de-
termines the subgrid viscosity and scalar diffusion coeffi-
cients, is conducted with the ‘‘compact parameter’’ finite
difference scheme of Carpenter.72 This is a variant of the
McCormack73 scheme in which a fourth order compact dif-
ferences are used to approximate the spatial derivatives, and
a second order symmetric predictor-corrector sequence is
employed for time discretization. The computational scheme
is based on a hyperbolic solver which considers a fully com-
pressible flow. Here, the simulations are conducted with a
low Mach number (M'0.3) to minimize compressibility ef-
fects. The procedure involved in the finite difference discreti-
zation is independent of the Monte Carlo solver, thus alter-
native differencing schemes can be used if desired. All the
finite difference operations are conducted on fixed and
equally sized grid points. The transfer of information from
these points to the locations of the Monte Carlo particles is
conducted via interpolation. Both fourth-order and second-
order ~bilinear! interpolation schemes were considered, but
no significant differences in SGS statistics were observed.
The results presented in the next section are based on simu-
lations with fourth- and second-order interpolations in two-
dimensional ~2D! and 3D flows, respectively.

VI. RESULTS
A. Flows simulated

To demonstrate the effectiveness of the FDF method, in
this section simulation results are presented of a temporally
developing mixing layer and a spatially developing planar
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jet. Both non-reacting and reacting flows are considered. In
the latter, a simple reaction of the type A1B!P is con-
sidered in which the reaction is assumed to be constant rate
and non-heat releasing ~isothermal flow!. Therefore, vA
5vB52KAB , where K is a constant and A ,B denote the
mass fractions of species A, B, respectively. The species
A, B, P are assumed thermodynamically identical and the
fluid is assumed to be calorically perfect. Both 2D and 3D
simulations are conducted of the temporal mixing layer. The
jet simulations are 2D.

The temporal mixing layer consists of two coflowing
streams traveling in opposite directions with the same
speed.74–77 The reactants A and B are introduced into the
top and the bottom streams, respectively. In the planar jet,
the reactant A is injected with a high velocity from a jet of
width D into a coflowing stream with a lower velocity car-
rying reactant B.76,78 Both these flows are dominated by
large scale coherent structures. The formation of these struc-
tures are expedited by imposing low amplitude perturbations.
In the figures presented below, x ,y correspond to the stream-
wise and cross-stream directions, respectively. In 3D, z de-
notes the spanwise direction. In the temporal mixing layer,
the length in the streamwise direction is chosen to be twice
the wavelength of the most unstable mode to allow for the
rollup of two large vortices and one ~subsequent! pairing of
these vortices. In 3D, the lengths in the streamwise and the
cross-stream directions are the same as those in 2D. The
length in the spanwise direction is 60% of that in the stream-
wise direction. The forcing is imposed in such a way to
provide significant 3D transport.79,80 The initial values of the
mass fractions of reactants A and B at each of the spanwise
points in 3D are identical to those in 2D. The size of the
domain in the jet flow is 0<x<14D , 23.5D<y<3.5D .
The velocity ratio of the coflowing stream to that of the inlet
jet is kept fixed at 0.5.

Both flows are simulated via both DNS and LES. The
procedure in DNS is exclusively based on the finite-
difference solution of Eqs. ~1!–~4! in which there are suffi-
cient grid points to resolve the flow without a need for sub-
grid closures. The procedure in LES is based on the Monte
Carlo solution of the modeled FDF transport equation ~Eq.
~32!! for the scalars augmented by the finite difference solu-
tion of the modeled equations of the filtered hydrodynamic
variables ~Eqs. ~6!–~7!!. In the presentation below, these re-
sults are identified by the abbreviation FDF. In addition, an-
other LES is conducted in which the modeled transport equa-
tions for the filtered scalar and the generalized subgrid
variance are simulated with the finite difference scheme. In
these simulations, the hydrodynamic solver and the models
for the subgrid stresses and mass fluxes are identical to those
employed in FDF, but the effects of SGS fluctuations in the
filtered reaction rate are ignored. Effectively, Eqs. ~33!–~34!
are solved with the assumption ^va(F)&L5va(^F&L). The
results based on this procedure are referred to as LES-FD.
~The approximation ^va(F)&L5^va(^F&L)&L was also con-
sidered but did not show an improvement over LES-FD.!

In both FDF and LES-FD simulations, the subgrid
stresses are modeled via the Smagorinsky closure ~Eqs. ~9!–
~10!! and the MKEV model ~Eq. ~11!!. The subgrid mass

fluxes are modeled via Eq. ~12!. No attempt is made here to
determine the magnitudes of the constants appearing in these
models in a dynamic manner.14 However, several different
values are considered for Cs and Ck . The values which give
the best overall agreement with DNS in non-reacting flows
are Cs50.014, 0.01 and Ck50.02, 0.013, in 2D, 3D, respec-
tively. These values are subsequently used in FDF and
LES-FD of scalar quantities in reacting flows. This param-
eterization is justified since the LES of the hydrodynamic
field is not the subject of our FDF closure. The other param-
eters Sc51, Sct50.7 are kept fixed. In the MKEV model,
the ratio of the filter size at the secondary level to that at the
grid level is DG8 /DG53. In the implementation of the
MKEV in the shear flows as considered, the magnitude of
the reference velocity Ui is set to zero in the cross-stream
direction and to the average of the high and low speed
streams in the streamwise direction. The subgrid mixing
model requires the input of the constant CV in the mixing
frequency which also determines the SGS variances. As will
be shown below CV'3 is suggested, but the influence of
this parameter is also studied by considering other CV val-
ues.

The flow variables are normalized with respect to refer-
ence quantities denoted by the subscript r . In the temporal
mixing layer the reference quantities are the freestream val-
ues and the length Lr is defined such that (dv0 /Lr)52.83,
where dv0 is the initial vorticity thickness. In the planar jet,
Lr5D and the reference quantities are those at the high
speed jet stream. The reference quantities define the Rey-
nolds number Re5 (UrLr /n). For the temporal mixing layer,
the Reynolds number based on the total velocity difference
across the layer (DU52Ur) is given by Redv0

55.66 Re. The
reaction rate is parameterized by the Damköhler number
Da5K/(Ur /Lr). The non-dimensional time is given by t*
5(Urt/Lr). In the presentations below, the asterisk is
dropped.

B. Numerical specifications

The magnitude of the flow parameters considered in the
simulations are dictated by the resolution which can be af-
forded by DNS. The primary parameters are the flow Rey-
nolds number ~Re!, the Damköhler number ~Da! and the mo-
lecular Schmidt number. All finite difference simulations ~in
both DNS and LES! are conducted on equally-spaced, square
(Dx5Dy5Dz (for 3D)5D) grids. Since the size of the
computational domain is fixed, the number ~and the size! of
the grids depends on type of simulation being conducted.
The highest resolution in DNS of the 2D temporal mixing
layer consists of 4333577 grid points which allows reliable
DNS with Re5500 and Da52 ~based on the velocity differ-
ence and the vorticity thickness at the initial time!. The DNS
of the 3D temporal mixing layer is conducted on 2173289
3133 grid points with Re5400, Da51. The resolution in
DNS of the planar jet consists of 7213361 grid points and
allows accurate simulations with Re512 000 and Da52
~based on the centerline velocity at the inlet and the jet
width!.

The FDF and LES-FD are conducted on grids coarser
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than those in DNS. Unless otherwise specified, the LES reso-
lutions in the mixing layer consist of 37349 grid points in
2D, and 55373334 grid points in 3D. For the planar jet, a
resolution of 101351 is used for nonreacting flow simula-
tions with Re55000, while a 181391 grid is utilized for
reactive flow simulations with Da52 and Re512 000. A
top-hat filter function47 of the form below is used

G~x82x!5)
i51

ND

G̃~xi82xi!,
~40!

G̃~xi82xi!5H 1
DG

uxi82xiu<
DG

2

0 uxi82xiu.
DG

2

in which ND denotes the number of dimensions, and DG
52D . No attempt is made to investigate the sensitivity of
the results to the filter function48 or the size of the filter.81

In FDF, the Monte Carlo particles are distributed at t
50 throughout the domain. In the temporal mixing layer, the
particles are distributed evenly throughout the whole compu-
tational region. In the FDF of the jet, the particles are sup-
plied initially in the inlet region 21.75D<y<1.75D . In all
the simulations, the particle density is monitored at all times
to ensure an approximately uniform distribution throughout
the mixing regions. In the temporal mixing layer, due to flow
periodicity in the streamwise direction, if the particle leaves
the domain at the right or the left boundary, new particles are
introduced at the other boundary with the same composi-
tional values. A similar procedure is employed in the span-
wise direction in 3D simulations. Due to mirror symmetry at
the upper and lower boundaries, particles that exit the top or
bottom boundaries return to the domain at the opposite
boundary with the mass fractions values associated with A
and B interchanged. In the spatial jet, new particles are in-
troduced at the inlet at a rate proportional to the local flow
velocity and with a compositional makeup dependent on the
y coordinate. The density of the Monte Carlo particles is
determined by the initial number of particles per grid cell
~NPG! of dimension D3D ~3D in 3D!. The magnitude of
NPG is varied to assess its affect on statistical convergence
of the Monte Carlo results. This assessment is demonstrated
in 2D simulations of the temporal mixing layer. The simula-
tions of 3D temporal layer and the spatial jet are based on
NPG520. The size of the ‘‘ensemble domain’’ in the FDF
simulations is also varied to assess its influence on the sta-
tistical convergence. The following sizes are considered:
DE52D ,D ,D/2. The number of samples used to construct
the FDF is thus controlled by the values of NPG and DE .

An additional parameter which influences the numerical
accuracy is the magnitude of the incremental time step. The
stability criterion for the finite difference scheme requires72
CFL<1/) and is more stringent than the criterion for the
Fourier number. The effect of the time increment on the
accuracy of the Euler-Maruyamma scheme is also consid-
ered. This is assessed by considering several Dt values ~CFL

numbers!. In the context of Itô calculus,82,83 this issue is
considered by analysis of moments of the FDF up to the
second order.

The simulated results are analyzed both ‘‘instanta-
neously’’ and ‘‘statistically.’’ In the former, the instanta-
neous contours ~snap-shots! of the scalar values are consid-
ered. In the latter, the ‘‘Reynolds-averaged’’ statistics
constructed from the instantaneous data are considered. In
the spatially developing jet flow this averaging procedure is
conducted via sampling in time. In the temporal mixing
layer, the flow is homogeneous in x ~and z in 3D!; thus the
statistics are generated by constructing the ensemble from all
the grid points in the streamwise ~and spanwise! directions.
These statistics are y2t dependent. All Reynolds averaged
results are denoted by an overbar.

C. Consistency of FDF and convergence of the Monte
Carlo procedure

The objective in the results presented in this subsection
is to demonstrate the consistency of the FDF formulation and
the convergence of the Monte Carlo simulations. For this
purpose, the LES results via FDF and LES-FD are compared
against each other in shear flows under different conditions.
In non-reacting flows, any deviations between the FDF and
LES-FD results are attributed to the differences in the nu-
merical procedures. Since the accuracy of the finite differ-
ence procedure is well-established, this comparative analysis
provides a good means of assessing the performance of the
Monte Carlo solution of the FDF. Unless specified other-
wise, the Smagorinsky model is used to evaluate the eddy
viscosity in the simulations considered in this subsection.

In Fig. 1, results are presented of the LES of the non-
reacting temporally developing mixing layer. Shown in the
figure are the contour plots of ^A&L via ~a! FDF and ~b!
LES-FD, with A50, 1 on the bottom and top streams, re-
spectively. These contours correspond to results at a time
when the flow has experienced the pairing of two neighbor-
ing vortices. This figure provides a simple visual demonstra-
tion of the consistency of the FDF as the results via the
particle method are in agreement with those obtained by
LES-FD. In fact, the Monte Carlo results are somewhat more

FIG. 1. 2D mixing layer simulation results: Contours of the filtered con-
served scalar. ~a! FDF and ~b! LES-FD.
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attractive due the Lagrangian nature of the solution proce-
dure. While the LES-FD results display slight over- and
under-shoots, there are no such errors in the Monte Carlo
scheme.

A more rigorous means of assessing the FDF results is
via consideration of the Reynolds averaged results. Figures 2
and 3 show such results in the non-reacting temporal mixing
layer in which the sensitivity of the FDF predictions to sev-
eral parameters is assessed. Figure 2~a! shows the compari-
son of FDF and LES-FD results for ^A&L for several values
of DE . It is shown that the first filtered moment of the FDF
agrees very well with that obtained by LES-FD, even for
large DE values. The differences between the FDF and
LES-FD results are more apparent in Figs. 2~b,c,d! where the
cross-stream variations of sA are shown for several values of
DE and CV and for different LES grid resolutions. As ex-
pected, Figs. 2~b,c! show that with increasing CV , the mag-
nitude of the variance decreases. These figures also indicate
that the difference between FDF and LES-FD predictions
diminish as DE decreases. This is also corroborated in Fig.
2~d! in which the both FDF and LES-FD are conducted on
61381 grid points. At all DE values, the agreement between
FDF and LES-FD is better than those shown in Fig. 2~b!
with a lower finite difference resolution. The consistency of
the FDF and LES-FD results does not mean that the magni-
tude of CV can be specified. Hereinafter CV53 is adopted
since it provides the best overall match with DNS data as
shown in the next subsection.

The other parameters which influence the accuracy of
the Monte Carlo results are the number of Monte Carlo par-
ticles per grid cell ~NPG! and the magnitude of the incre-
mental time step. Figure 3~a! shows that sA values do not
vary significantly for NPG.50. In fact in other cases even
smaller NPG values can be used as will be shown. Figure
3~b! verifies the insensitivity of statistics to Dt as long as the
stability criterion is satisfied (CFL<1/)). Hereinafter,
CFL50.5 is used.

The sensitivity of the results to NPG and DE in the FDF
simulations of a reacting temporal mixing layer with Da52
is studied in Fig. 4. In these simulations, the MKEV model is
adopted to evaluate the subgrid viscosity because it performs
somewhat better than the Smagorinsky model for LES of
reactive flows ~as assessed by DNS data in the next subsec-
tion!. Shown in the figure are the Reynolds averaged values
of the filtered product mass fraction (^P&L) at a fixed time
~Fig. 4~a!! and the integrated total product (dP(t)
5*^P&L(y ,t)dy). The convergence of Monte Carlo solution
and the independence to NPG and DE are demonstrated by
these results ~at least for this first moment!. Moreover, it is
shown that while the mean value of the scalar as used in the
mixing model for a given particle should be evaluated at the
particle location, the mean value at the nearest finite differ-
ence grid point could also be substituted. This eliminates the
need for interpolating the mean scalar field to the particle
locations.

The consistency and the convergence of the Monte Carlo
simulation of the FDF in the nonreacting jet flow are sum-
marized in Figs. 5–6 in which the time averaged ~Reynolds!

FIG. 2. 2D mixing layer simulation results: ~a! Conserved scalar distribution
vs. the cross-stream coordinate. Generalized variance vs. cross-stream coor-
dinate at ~b! CV51 and ~c! CV53. ~d! Same as ~b! but with increased
resolution.
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statistics for the first and second subgrid moments of A are
presented. Similar to the temporal mixing layer results, Fig.
5 shows the accuracy of the Monte Carlo solver and the
insensitivity of results to DE for the first moment of the FDF.
Similarly, for the scalar variance, the agreement between the
FDF and LES-FD results diminishes as the size of DE is
decreased. At x55D , the FDF results with DE5D are very
close to those via LES-FD. With the same DE values the
agreement is not as good at x59D and lower values of DE
are needed to achieve a better agreement for the subgrid
variance. However, as will be shown below, with this reso-

FIG. 3. 2D mixing layer simulation results: ~a! Cross-stream variation of the
generalized variance for various NPG. ~b! Generalized variance vs. cross-
stream coordinate at various CFL numbers.

FIG. 4. 2D mixing layer simulation results: ~a! Cross-stream variation of the
product mass fraction. ~b! Total product vs. time. The long-dashed line
represent the case where the mean value of the scalar in the mixing model
for a particle is set to be equal to the value at the nearest finite difference
grid point.

FIG. 5. 2D planar jet results: Conserved scalar distribution vs. cross-stream
coordinate at x55D , 9D .

FIG. 6. 2D planar jet results: Generalized variance vs. cross-stream coordi-
nate at ~a! x55D and ~b! x59D .
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lution the mean filtered values of reacting scalars are pre-
dicted reasonably well.

The consistency of the FDF simulation in 3D is demon-
strated in Fig. 7 in which the scatter plot is shown of the
instantaneous filtered A values as obtained by FDF vs. those
via LES-FD. The hydrodynamic LES is based on MKEV in
both simulations. The correlation coefficient between the
data obtained by the two simulations is 0.99. This excellent
correlation is also reflected in the cross stream profiles of the
Reynolds-averaged filtered quantities in Fig. 8.

D. DNS validations of the FDF

The objective in this section is to assess the overall per-
formance of the FDF and to appraise the validity of the sub-
models employed in the FDF transport equation. For this
objective, the FDF results are compared against DNS of the
same flow configuration with the same magnitudes of Re and
Da. For a meaningful comparison, the DNS data are filtered
and the results on the coarse grids are compared with those
on the corresponding coarse grids in the FDF simulations. To
illustrate the capability of the FDF, the results are also com-
pared with LES-FD in which the effects of SGS fluctuations
on the filtered reaction rate are ignored.

First the resolution requirement for DNS is determined.
This is demonstrated here for the 2D mixing layer. A similar
procedure is followed for the other flow configurations. In
Fig. 9 results are presented of the temporal evolution of the
vorticity thickness (dv) and the total product (dP) in a react-
ing layer with Re5500, Da52 at several resolutions. It is
shown that the results generated via 2893385 are almost
identical to those on 4333577 grid points. Analysis of other
statistical results ~not shown! show a similar behavior. Here-
inafter 4333577 grid points are used in all DNS of the 2D
mixing layer. The resolution employed in LES ~both FDF

FIG. 7. 3D mixing layer simulation results: Scatter plot of the filtered values
of a conserved scalar as obtained by FDF vs. those via LES-FD.

FIG. 8. 3D mixing layer simulation results: Cross-stream variations of the
mean value of the filtered mass fraction of a conserved scalar.

FIG. 9. 2D mixing layer simulation results: Effect of grid resolution on
temporal evolution of the ~a! vorticity thickness and ~b! total product.

FIG. 10. 2D mixing layer simulation results: The integrated Reynolds aver-
aged values of the filtered scalar’s variance vs. time.
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and LES-FD! is coarser consisting of 37349 grid points.
The results in Fig. 9 indicate the inaccuracy of ‘‘DNS’’ at
this resolution.

To determine the magnitude of CV , in Fig. 10 the inte-
grated Reynolds averaged values of the SGS variance
(*sA(y ,t)dy) of a nonreacting scalar as predicted by FDF
are compared with those via DNS. This comparison shows
that CV'3 yields a reasonable agreement between the pre-
diction and DNS results. Thus, this value is used in absence
of a better model of the subgrid mixing frequency.

To demonstrate the difficulty of modeling the SGS scalar
fluctuations in reacting flows, the Reynolds averaged profiles
for the ‘‘SGS unmixedness’’ (tAB5^AB&L2^A&L^B&L) and
its ‘‘Reynolds’’ subpart84,85 RAB5^A8B8&L2^A8&L^B8&L as
obtained directly from DNS data are shown in Fig. 11. These
results show the importance ~non-zero values! of these cor-
relations. They also show that RAB is a fraction of tAB sug-
gesting that modeling of tAB in LES is more complex than
that in Reynolds procedures.

In Fig. 12, the FDF predictions of the total product are
compared with DNS results. The Smagorinsky model is em-
ployed in FDF with several values of the parameter Cs . Ob-
viously for a constant Cs value, the agreement between DNS
and FDF is not very satisfactory. The subgrid viscosity based

on the Smagorinsky closure affects both the resolved hydro-
dynamic field and the subgrid scalar mixing process. It is
known that the Smagorinsky closure sometimes generates
excessive damping on the resolved scales in transitional
regions.49 Here, an attempt is made to rectify the situation,
albeit in a very ad hoc manner. In the temporal mixing later,
Cs should be initially zero to reflect the fact that the flow is
‘‘laminar.’’ Then its value should increase in time as the
flow becomes more ‘‘turbulent.’’ The FDF results in Fig. 12
with Cs}t agree more favorably with DNS. This is partly
due to better predictions of the hydrodynamic field ~Fig. 13!
but also due to more accurate representation of the subgrid
mixing frequency. This better agreement is not sufficient to
suggest a new model for Cs ; rather it is to demonstrate the
importance of the subgrid diffusion in affecting the FDF di-
rectly ~through the subgrid mixing! and indirectly ~through
the input of the hydrodynamic parameters!.

In order to better predict the subgrid viscosity, the
MKEV model ~Eq. ~11!! is adopted. In Fig. 13 it is shown
that the vorticity thickness predicted by the MKEV model
compares with DNS data better than that via the Smagorin-
sky model. The improved prediction of the eddy viscosity
also improves the FDF predicted product formation as shown
in Fig. 14 for several values of the Damköhler number. Due
to the demonstrated superiority, the MKEV closure is uti-
lized in all subsequent simulations unless otherwise noted.

FIG. 11. 2D mixing layer simulation results: Total SGS unmixedness and
Reynolds subpart vs. cross-stream coordinate.

FIG. 12. 2D mixing layer simulation results: Total product variation with
time. The Smagorinsky model is used to represent the eddy viscosity for the
FDF simulations.

FIG. 13. 2D mixing layer simulation results: Vorticity thickness vs. time.

FIG. 14. 2D mixing layer simulation results: Temporal evolution of the total
product.
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FIG. 15. 2D mixing layer simulation results: ~a! Cross-stream variation of
the product distribution. ~b! Temporal evolution of the total product.

FIG. 16. 2D mixing layer simulation results: Scatter plots of instantaneous
value of the conserved scalar vs. the mean value. Data taken from ~a! DNS,
~b! FDF throughout the computational domain.

FIG. 17. 2D planar jet simulation results: Contours of the normalized in-
stantaneous subgrid unmixedness ~a! DNS, ~b! FDF.

FIG. 18. 2D planar jet simulation results: Instantaneous reaction rate as
determined by ~a! DNS, ~b! FDF, ~c! LES-FD.
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To demonstrate the importance of the SGS scalar fluc-
tuations, the results of FDF and LES-FD are compared with
DNS results in Fig. 15. This figure shows that the neglect of
SGS unmixedness results in significant overpredictions of
the product mass fraction. This behavior is observed at all
times and all values of the Damköhler number ~Fig. 15~b!!
and is consistent with that in Reynolds averaging.18 More-
over, Fig. 15~b! shows that as the magnitude of the
Damköhler number increases, the neglect of the SGS unmix-
edness in LES-FD results in progressively higher deviation
of product formation relative to DNS. This is significant
since the Da values in practical reacting systems can be quite

large. Therefore it is expected that the effects of the SGS
unmixedness are very pronounced in such applications. To
verify that the enhanced product formation in LES-FD is not
associated with the numerical discretization errors, an addi-
tional FDF is conducted in which the filtered reaction rate is
‘‘incorrectly’’ calculated in terms of the filtered values of the
reactants’ mass fractions. The results based on this model are
identified by FDF* in Fig. 15~a! and consistent with LES-FD
results, overpredict the rate of reactants’ conversion.

It is useful to compare the DNS results for ‘‘fine grid’’
scalar values with the ‘‘fine-grained’’ values associated with
the Monte Carlo particles. The ‘‘scatter’’ plots of the instan-
taneous fine grid values of A vs. its filtered value ^A&L as
obtained by DNS are presented in Fig. 16~a! and the scatter
plot of fine grained A values vs. ^A&L is shown in Fig. 16~b!.
These results are associated with a non-reacting temporal
mixing layer and are taken at a fixed time. The points in Fig.
16~a! correspond to the values at all the grid points employed
in DNS within the computation domain. The points in Fig.
16~b! correspond to all Monte Carlo particles occupying the
same domain. It is shown that the ‘‘density’’ of scatter is
similar in the two plots indicating a qualitative agreement
between FDF and DNS. However, the scatter in FDF is ex-
pectedly somewhat greater but not with a significant density.

FIG. 20. 2D planar jet simulation results: Total product vs. the downstream
coordinate.

FIG. 19. 2D planar jet simulation results: Cross-stream variation of the
mean product mass fraction at ~a! x55D and ~b! x59D .

FIG. 21. 3D mixing layer simulation results: Cross-stream variation of the
product distribution.

FIG. 22. 3D mixing layer simulation results: Temporal evolution of the total
product.
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The effectiveness of the FDF to predict the slightly more
complex jet flow is summarized in Figs. 17–20. Figure 17
shows the instantaneous contours of the normalized SGS un-
mixedness as obtained by filtered DNS and FDF. Note that
this term is assumed to be identically zero in LES-FD. The
SGS unmixedness is negative throughout the reaction zone,
thus its effect is manifested in a decrease of the filtered re-
action rate. This is readily observed in Fig. 18, where the
contour plots of the reaction rates are displayed for the fil-
tered DNS, FDF and LES-FD approaches. While the peak
values in the DNS are slightly higher than those observed in
the FDF simulations, the reaction zone predicted by the FDF
simulation is slightly thicker ~due to the finite size of the
ensemble domain! therefore yielding a comparable amount
of converted products. In contrast, the filtered reaction rates
obtained by the finite difference LES procedure in which the
SGS unmixedness is neglected are significantly higher. This
is reflected in Fig. 19, where the cross-stream variation of the
time-averaged filtered values of the product mass fraction are
presented at two downstream locations and in Fig. 20, where
the streamwise variation of the integrated total product
(dP(x)5*^P&L(x ,y)dy) is shown. Two additional points
are intended by presentations of Figs. 19 and 20. First, the
FDF results are compatible with those of DNS at all down-
stream coordinates. Therefore, there is no ‘‘secular’’ behav-
ior associated with possible modeling errors in the FDF. Sec-
ond, the differences between the FDF and DNS in predicting
the subgrid scalar variances at large x/D values as observed
in the variance results in Fig. 6 do not seem to yield signifi-
cant differences in the amount of product formation as pre-
dicted by the FDF. In all the cases the neglect of the SGS
fluctuations, as done in LES-FD, results in significant over-
predictions of the filtered reactant conversion rate. It is ex-
pected that these overpredictions would become even more
significant at higher Damköhler and Reynolds numbers.

The major conclusions drawn from the 2D results are
confirmed in 3D simulations. The cross-stream variation of
the filtered mean products and the temporal variation of the
total product in the 3D mixing layer are shown in Figs. 21
and 22. The performances of the Smagorinsky and MKEV

closures in predicting the hydrodynamic field are similar to
those in 2D. With either closures, the amount of products
predicted by LES-FD is higher than those obtained by FDF
and DNS. The FDF results are again in a good agreement
with DNS data. This agreement also indicates that the mix-
ing model with CV53 works well in 3D simulations; no
attempt was made to find the optimize value of this constant.
Future applications to other flow configurations would deter-
mine the generality of the model.

E. Comparison of computational requirements

The total computational times associated with some of
the simulations are shown in Tables I–III. The cases consid-
ered in this table are those which give reasonably accurate
predictions of the first FDF moments of the reacting scalar
field. Expectedly, the overhead associated with the FDF
simulation is somewhat extensive as compared to LES-FD;
nevertheless the FDF’s computational requirement is signifi-
cantly less that of DNS. While this overhead was tolerated in
present simulations, there are several means of reducing it
for future applications. A detailed examination of the indi-
vidual routines utilized in the FDF simulations indicates that
the most demanding computation is associated with the par-
ticle interpolation procedure. The fourth order interpolation
routine consumes about 51.3% of the total CPU time. The
bilinear scheme reduces the computational time by 36%. If
interpolation can be totally disregarded, i.e., using the results
at the nearest finite difference grid point as shown in Fig. 4,
the CPU time can be decreased by 50%. In addition, the
Lagrangian procedure would benefit from the utilization of
parallel architecture, since a significant portion of the time is
devoted to computations in large loops dimensioned by the
total number of Monte Carlo particles. This has been dis-
cussed for use in PDF ~Ref. 86! and its utilization is recom-
mended for FDF.

In comparing the computational requirements of FDF
with those of DNS, it is important to note that this compari-
son could be made only in flows for which DNS was pos-
sible. The DNS times and the FDF times are as close as they
are simply because the DNS had to be done at low Re, Da
values. At higher values of these parameters, the difference
could be much greater. This warrants further extensions and
applications of FDF for more complex turbulent reacting
flows for which DNS is not possible.

TABLE I. Total computational times for the 2D reacting mixing layer simu-
lations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 4333577 — 285.45 14, 15~b!
FDF 37349 40 8.45 14

LES-FD 37349 — 1 15~b!

aUnit corresponds to 11 s on a Cray-C90.

TABLE II. Total computational times for the reacting jet simulations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 7213361 — 52.12 18~a!
FDF 181391 20 12.56 18~b!

LES-FD 181391 — 1 18~c!

aUnit corresponds to 809 s on a Cray-C90.

TABLE III. Total computational times for the 3D reacting mixing layer
simulations.

Simulation Grid resolution NPG Normalized CPU timea Figure

DNS 21732893133 – 182.71 21, 22
FDF 55373334 20 7.64 21, 22

LES-FD 55373334 – 1 21, 22

aUnit correspond to 655 s on a Cray-C90.
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VII. CONCLUDING REMARKS

It is demonstrated that the filtered density function
~FDF! provides a powerful method for large eddy simulation
~LES! of turbulent reacting flows. The method is based on
the representation of the distribution of the unresolved fluc-
tuations at the subgrid level. This is similar to the probability
density function ~PDF! methods in Reynolds averaging pro-
cedures. Here, the FDF methodology is developed for treat-
ment of scalar variables. Thus, similar to PDF methods it
represents the effects of chemical reactions in a closed form.

A modeled transport equation is developed for the FDF
by adopting a closure strategy similar to that in PDF meth-
ods. It is shown that the Lagrangian Monte Carlo scheme
provides an effective means of solving the FDF transport
equation. The scheme is exploited for LES of two- and three-
dimensional shear flows under both nonreacting and reacting
conditions. The simulated results are compared with those
based on conventional LES methods in which the effects of
subgrid scalar fluctuations are ignored ~LES-FD!, and those
via direct numerical simulation ~DNS! of flows with identi-
cal values of the physical parameters. The convergence of
the Monte Carlo numerical results and the consistency of the
FDF formulation are demonstrated by comparisons with the
Eulerian results of LES-FD of non-reacting flows. The supe-
riority of the FDF over LES-FD is demonstrated by detailed
comparative assessments with DNS results of reacting shear
flows. It shown that the subgrid scale scalar fluctuations have
a very significant influence on the filtered reaction rate; the
neglect of these fluctuations results in overpredictions of the
filtered reactant conversion rate.

Although the present methodology is developed for iso-
thermal, constant density, reacting flows with a simple kinet-
ics scheme, the extension to variable density flows, with exo-
thermic reactions imposes no serious mathematical
difficulties. With such an extension, it is conceivable that
LES of reactive flows with realistic chemical kinetics may be
conducted for engineering applications in the near future, if
the computational overhead associated with the FDF can be
tolerated. In this regard, the scalar FDF methodology is at-
tractive in that the present Monte Carlo solver can be used
directly in available CFD codes. Similar to PDF methods, the
closure problems associated with the FDF are the correla-
tions involving the velocity field ~such as SGS stresses and
mass fluxes!. This may be overcome by considering the joint
velocity-scalar FDF similar to that in PDF.87

The computational requirement for FDF is more than
that for LES-FD and less than that for DNS. The range of
flow parameters ~such as the Reynolds and the Damköhler
numbers! that can be considered by FDF is significantly
larger than can be treated by DNS, and the results are more
accurate that those by LES-FD. This comparison of compu-
tational requirements could be made here only in flows for
which DNS was possible, i.e., low Da, Re values. At higher
values of these parameters, the computational cost associated
with DNS would be exceedingly higher than that of FDF.
Thus for practical flows for which DNS is currently impos-
sible, FDF would be a good alternative. Several means of
reducing the FDF’s computational requirements are recom-

mended. These could be useful in future applications in com-
plex flows. The FDF methodology will benefit from ongoing
and future improvements in PDF schemes from both model-
ing and computational standpoints.56
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