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Abstract

Numerical errors in large-eddy simulations (LES) arise from aliasing and discretization errors, and errors in the

subfilter-scale (SFS) turbulence model. Using a direct numerical simulation (DNS) dataset of stably stratified shear flow

to perform a priori tests, we compare the numerical error from several finite difference schemes to the magnitude of the

SFS force. This is an extension of Ghosal�s analysis [J. Comput. Phys. 125 (1996) 187] to realistic flow fields. By
evaluating different grid resolutions as well as different filter–grid ratios, we provide guidelines for LES: for a second-

order finite difference scheme, a filter–grid ratio of at least four is desired; for a sixth-order Pad�ee scheme, a filter–grid
ratio of two is sufficient.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Large-eddy simulation (LES) has become an increasingly used method for predicting turbulent flows.

However, LES and direct numerical simulation (DNS) both suffer from discretization and aliasing errors

that depend on the numerical schemes used. Because of computational limits, LES has an additional source

of error owing to the fact that the velocity field is not fully resolved. The Navier–Stokes equations are
filtered, and the effect of subfilter-scale (SFS) motions is modeled. Thus numerical errors in LES result from

aliasing and discretization errors, as well as from errors in the SFS model.

Much of the current research in LES is focused on the development of improved SFS models, without

reference to perhaps more significant, numerical errors that are present. However, as LES is applied to

more complex problems, it will become even more important to understand errors inherent in the numerical

schemes used, especially if we hope to create accurate forecast models. While a spectral, dealiased code may

be able to avoid aliasing and finite difference errors (though not SFS errors), virtually all turbulence
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calculations in complex domains are carried out with finite differences. When finite differences schemes are

used, truncation errors as well as the formulation used for nonlinear terms of the Navier–Stokes equations

have been shown to be important for numerical stability and accuracy [5]. Furthermore, assessment of

truncation and aliasing errors is crucial for ensuring that the contribution of the SFS forcing is not

dominated by numerical errors.

A systematic analysis of these numerical errors is difficult because of nonlinear interactions between

them. The traditional linearized analysis of errors for partial differential equations is therefore not ade-

quate. Ghosal [3] was able to draw important conclusions by using statistical analysis to derive errors in
LES from a random field with a von K�aarm�aan energy spectrum. He found that for an eighth-order finite
difference scheme, the LES filter size must be at least twice the grid spacing for the contribution of the SFS

force to the total nonlinear force to be significant compared to the errors introduced by aliasing and

truncation. For a second-order finite difference scheme, Ghosal found that the filter must be at least four

times the grid spacing. Kravchenko and Moin [5] performed a posteriori tests which indicated that different

(but analytically equivalent) formulations of the nonlinear terms give different results because of finite

difference and aliasing errors. Blaisdell et al. [2] present results which indicate that choosing a particular

form for the nonlinear terms with finite differencing may stabilize the results and reduce the need for
dealiasing. There have also recently been several studies which have developed improved higher-order finite

difference schemes with the aim of reducing numerical errors in LES (see for example [1,8]). Others have

performed studies which have explicitly investigated numerical errors with regard to LES or specifically the

computation of SFS models (see [4,9,11]).

Here we present results from error analysis performed using a direct numerical simulation dataset to

generate a filtered subset representing ‘‘exact’’ LES data. In particular, we aim to examine the conclusions

of Ghosal [3] with a more realistic flow field. As his results from von K�aarm�aan spectra have not been verified
by analysis of real datasets, we seek to re-evaluate his conclusions here, commenting on differences due to
the nature of the data used. As most LES calculations of engineering interest are performed at moderate

Reynolds numbers, we expect the DNS dataset to be informative. Consideration of SFS model performance

in relation to numerical errors is not the focus of this work and will not be addressed.

In Section 2 we describe the dataset and our approach in the a priori testing. Following, in Section 3, we

discuss the relative magnitudes of the SFS force and nonlinear terms in relation to filter size and resolution.

Sections 4 and 5 discuss finite difference and aliasing errors, and compare them to an ideal SFS forcing

term.

2. Numerical tests

The DNS data used for a priori testing are from the stably stratified homogeneous shear flow simulations

performed by Shih et al. [10]. The Reynolds number based on the Taylor microscale is 89.44, the Rich-

ardson number is 0.16, and the nondimensional shear number is 2.0. This dataset were chosen because it is

homogeneous (allowing use of Fourier analysis) but has the increased complexity generated by the strat-

ification; turbulent length scales are reduced due to the stratification and therefore are more difficult to
model than those from a flow with neutral stratification. We expect that the results from this dataset will be

more realistic than those of a simpler homogeneous flow, however we have also examined an isotropic

turbulence case produced by the same DNS code and found similar results. The results from this analysis

should therefore be appropriate for extension to moderate Reynolds number flows.

The velocity fields used for a priori testing are obtained by using a sharp Fourier cutoff filter on the full

1283 DNS data. These cutoff filtered fields are treated as ‘‘exact’’ data for a given grid size. Thus, ui for a
particular grid size is obtained by cutoff filtering the DNS data to remove the high wavenumbers which

would not be present on a coarser grid. LES quantities such as ui and uiuj are then obtained for each grid
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size using a Gaussian filter in spectral space. We choose not to use a spectral cutoff filter for calculation of

these LES variables since our primary application area of interest is in complex geometries where finite

difference methods are used. A tophat filter could also be used to give comparable results; the discrete filter

coefficients used for tophat and Gaussian filters with finite difference methods are similar.

Fig. 1 shows the three-dimensional energy spectra for the velocity fields used to study numerical errors.

Several grid cutoff wavenumbers are considered to study the effect of different grid resolutions; the grid is

reduced from 1283 for the original DNS to 643, 323, 163, and 83 for the LES grids. Using these ‘‘exact’’

fields, we can compute the nonlinear and SFS terms for LES using different methods and compare results
for the magnitudes of errors. Notice that the shape of these spectra are quite different than the von K�aarm�aan
energy spectra used by Ghosal [3]. In particular, due to the low Reynolds number of the DNS dataset, the

inertial range is very small, as seen by comparison to the )5/3 slope also plotted. We therefore expect that
our analysis of this dataset may yield different conclusions from the high Reynolds number results of

Ghosal.

The energy spectra in Fig. 1 and in all the following figures are computed for spherical shells and plotted

versus the magnitude of the wavenumber. The spherical wavenumber is computed as j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
,

where k1, k2, and k3 are the Cartesian wavenumbers. Energy from each wavenumber triplet k1, k2, and k3 is
assigned to the corresponding wavenumber bin for j, chosen at the nearest integer level. The spectra are
often not smooth at the highest wavenumbers due to inadequate statistical sampling in the outer spherical

shells. However, the 1-D spectra (not shown) for these quantities are smooth even at the tail ends. For

simplicity, we will refer to the grid size and the chosen filter–grid ratio (FGR) instead of the exact cutoff

wavenumber for each LES grid. In addition, most results are presented for the case when the Gaussian LES

filter width is twice the grid spacing (with a 323 grid). We use this as our base case as this ratio seems to be

the most commonly used in the recent literature. We consider other filter widths in our analysis and

comment on their effect. All numerical tests are performed in Fourier space, as described further in the
sections that follow.

Fig. 1. Three-dimensional energy spectra of the ‘‘exact’’ velocity fields used for analysis, obtained by cutoff-filtering the original DNS

dataset. A j�5=3 line is also plotted for comparison.
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3. Comparison of total nonlinear and subfilter-scale terms

The full nonlinear term in the Navier–Stokes equations, ouiuj=oxj, creates a closure problem in LES

when this term is filtered: ouiuj=oxj. The usual approach in LES is to replace this term with the closed term
ouiuj=oxj (assuming the filter and derivatives commute) and to subtract a SFS force term, osij=oxj, from the
right-hand side of the equation, where sij ¼ uiuj � uiuj. This effectively transfers the closure problem to the
right-hand side of the filtered Navier–Stokes equations. Traditionally the approach has been to model sij as
a purely dissipative term, using an eddy-viscosity formulation. Recent work has shown that this method
may not be adequate, especially when the flow dynamics are sensitive to energy backscatter (counter-

gradient transfer from small to large scales) in the flow.

It is interesting to compare the relative magnitudes of the SFS term, osij=oxj, and the total nonlinear
term, ouiuj=oxj. In an ideal LES, the sum of these terms is equal to the full nonlinear term ouiuj=oxj which
can be obtained from a DNS (after filtering). In practice, the contribution to the total nonlinear term

depends on the SFS model used. However, even with a perfect SFS model, the contribution of the SFS

model would depend on the filter size chosen. The larger the filter size, the more energy is placed in the

subfilter scales, and the larger the SFS term must be. Fig. 2 shows the dependence of the SFS term on the
filter size for a fixed grid resolution. This is similar to Fig. 2 in Ghosal�s paper [3], however the spectra are
quite different, as the spectrum of the nonlinear terms generated from the von K�aarm�aan spectrum increases
monotonically while there is a definite downturn in the present data.

Another important trend is that as the resolution of the grids we consider increases (and hence the

absolute filter width decreases for a given filter–grid ratio), the results approach that of a DNS. Thus the

relative contribution of the SFS term to the total nonlinear term (at a fixed filter–grid ratio) becomes

smaller as resolution is increased. This trend can be seen in Fig. 3 where a global measure of the nonlinear

and SFS terms is plotted for different grid resolutions. The values are normalized (unlike Ghosal�s Fig. 6) by
the total for both the nonlinear and SFS terms, since the totals are dependent on the grid resolution. The

Fig. 2. Energy spectra of the spectrally computed (filtered) nonlinear term (in the dealiased divergence form) and the SFS term for a

fixed resolution (323 grid) and filter–grid ratios of one and two.
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global measure is the same as that in Ghosal�s equation (81), which is the square root of the integral of the
energy spectrum:

r� ¼
Z jm

0

Eð�ÞðjÞdj
� �1=2

: ð1Þ

Here r� is the global measure for a particular quantity (such as the nonlinear terms, error terms, etc.), Eð�Þ is
the three-dimensional energy spectrum for that quantity, and jm is the maximum wavenumber magnitude.
Note that in our case the power spectrum includes the corners of the wave space, unlike Ghosal�s.
Thus, the importance of accurately representing the SFS term is greatest at low resolutions where the

SFS term contributes a larger percentage of the total force. However, at low resolutions, numerical error

also becomes more significant because fine-scale motions are not well-represented on the grid.

4. Finite differencing errors

Modified wavenumber analysis is useful for examining truncation errors of different numerical schemes.

The modified wavenumber, k0, for a finite difference scheme, is derived by discrete differentiation of
u ¼ expðikxÞ [7]. Finite difference schemes exhibit large errors near the grid wavenumber cutoff, as evi-
denced by the reduced magnitude of the modified wavenumbers. Higher-order finite difference methods

perform better; however all finite difference methods have low modified wavenumbers near the grid cutoff

point. To examine the effect of truncation errors, we will insert the modified wavenumbers in place of the

true wavenumber into spectral differentiation routines to compare finite difference and spectral results, as
was done by Kravchenko and Moin [5].

Even though all spatial derivatives in the LES equations will have finite differencing errors, we are

primarily interested in the truncation error in the nonlinear term because this has the potential to be very

Fig. 3. Global energies of the spectrally computed nonlinear term (in the dealiased divergence form) and the SFS term for different grid

resolutions, normalized by the sum of the nonlinear and SFS terms. Data points are shown at the 83, 163, 323, and 643 grid resolution

locations. Filter–grid ratio¼ 2.
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large and overshadow the contribution of the SFS term. In Fig. 4 we compare the spectrum of the finite

difference error in computing the nonlinear term (computed using the divergence form defined later in Eq.

(3)) to the SFS force term, with a filter–grid ratio of unity. The finite difference error is computed by

subtracting the nonlinear term calculated with a finite difference scheme from that of the exact (spectrally

calculated) nonlinear term. We see that the trend is similar to that in Ghosal�s Fig. 4: the SFS force at high
wavenumbers is dominated by the error in the nonlinear terms, even when the nonlinear terms are com-

puted with a sixth-order Pad�ee scheme.
This situation cannot be improved by increasing the grid resolution, as also demonstrated by Ghosal (see

his Fig. 3) [3]. When the grid resolution is increased, finer-scale motions are better resolved and the role of

the SFS term decreases, as seen in Fig. 3. The finite difference error does not decrease, however, as the grid

must now resolve a larger range of motions as these are no longer in the subfilter range. Thus the finite

difference error continues to dominate the SFS term.

Ghosal [3] suggests that by choosing the proper filter–grid ratio (FGR) in combination with a high-order

finite difference scheme it is possible to reduce the finite difference error sufficiently. He shows that the filter–

grid ratio has a pronounced effect on the magnitude of the error term. We observe the same trend when this

is done for our DNS dataset. However, we choose to make the comparisons differently. Instead of keeping
the filter cutoff fixed and changing the grid size as Ghosal does, we keep the grid size fixed and change the

filter size to change the filter–grid ratio. Though the trends observed are similar, our perspective is more

directly applicable to real LES computations: the grid resolution is not readily increased because of

computer limitations, but the filter–grid ratio can be adjusted easily.

Fig. 5 shows that increasing the filter–grid ratio by a factor of two improves results appreciably. The

errors for the second-order and fourth-order finite difference schemes and the Pad�ee scheme are smaller over
much of the wavenumber range, though the errors still dominate at high wavenumbers. This is consistent

with Ghosal�s conclusions. In particular we see similar features in our Fig. 5 and Ghosal�s Fig. 10, for a
filter–grid ratio of two. It is not until the filter–grid ratio is equal to four that the second-order finite

difference scheme becomes acceptable. Fig. 6 shows the results for this combination, where the truncation

Fig. 4. Energy spectra of the finite differencing error in the nonlinear term in the dealiased divergence form, computed with second-

and fourth-order finite difference (FD) and sixth-order Pad�ee schemes, compared to the SFS force term. Filter–grid ratio¼ 1; 323 grid.
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error no longer dominates the SFS force. Ghosal�s Fig. 9 also indicates that for a second-order central
difference scheme, the filter–grid ratio should be at least 4, which is consistent with our results, even though

his plot is for a grid 43 times larger.

Fig. 5. Energy spectra of the finite differencing error in the nonlinear term in the dealiased divergence form, computed with second-

and fourth-order finite difference and sixth-order Pad�ee schemes, compared to the SFS force term. Filter–grid ratio¼ 2; 323 grid.

Fig. 6. Energy spectra of the finite differencing error in the nonlinear term in the dealiased divergence form, computed with second-

and fourth-order finite difference and sixth-order Pad�ee schemes, compared to the SFS force term. Filter–grid ratio¼ 4; 323 grid.
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Fig. 7 shows the global truncation error compared to the global SFS force for a filter–grid ratio of two.

The terms are normalized with respect to the total nonlinear terms to adjust for the energy at different grid

resolutions. For a filter–grid ratio of two, only the Pad�ee scheme gives a total error significantly less than the
SFS force for all grid resolutions. Notice that the global SFS force is larger than all the errors for grid sizes

of 83 ad 163, regardless of the scheme used. The explanation for this is probably that at such coarse res-

olution, the ‘‘exact’’ field we are comparing to (see Fig. 1) does not contain much energy or many fine scale

motions, so the error from differentiation is not large since the field is smooth.

It is also important to understand exactly what the consequences are of adjusting the filter–grid ratio.
When the filter size is increased on a fixed grid, a larger portion of motions must be represented by the SFS

term. Fig. 8 shows the total errors for the second-order finite difference scheme for different grid resolutions

and filter–grid ratios. This verifies our conclusion from Figs. 4–6 that increasing the filter–grid ratio makes

the total finite differencing error much smaller. Fig. 8 indicates that for all grid resolutions, error is reduced

by increasing the filter–grid ratio. The magnitude of the SFS force increases with the filter–grid ratio, as

more of the energy is placed into the subfilter scales, so that for FGR¼ 4 the SFS force dominates the error
for all grid resolutions.

In summary, Ghosal�s results lead to the conclusion that if the effect of the SFS terms is to be significant,
it is necessary to compute SFS terms using a filter width that is at least twice the size of the grid spacing, and

then only with an eighth-order finite difference scheme. To achieve the same results with a second-order

scheme, the filter would have to be made at least four times larger than the grid spacing. In our tests (which

use realistic spectra for low Reynolds number flows), we find that the sixth-order Pad�ee scheme performs
very well for FGR¼ 2 or greater. If a second-order scheme is to be used, FGR¼ 4 will give a global finite
difference error that is smaller than the SFS term. These requirements are quite stringent. In practice, many

LES codes use second-order finite difference methods with a filter–grid ratio of unity or at best two. Some

of the results of these LES codes are likely contaminated by significant numerical errors.

Fig. 7. Global finite differencing error in the nonlinear term in the dealiased divergence form, computed with second- and fourth-order

finite difference and sixth-order Pad�ee schemes, compared to the SFS force term. Data points are normalized by the total nonlinear

terms and shown at the 83, 163, 323, and 643 grid resolution locations. Filter–grid ratio¼ 2.
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5. Aliasing errors

Aliasing errors occur when variables are multiplied in physical space; high frequency components

produce higher frequency components which cannot be adequately represented on a finite grid. Thus, the

frequencies beyond the grid wavenumber cutoff are incorrectly ‘‘aliased’’ to wavenumbers that are resolved

[7]. The contribution of aliasing errors is largest at the highest wavenumbers where any energy above the

wavenumber cutoff incorrectly ‘‘folds over’’ into the resolved spectrum. While these aliasing errors appear

to be important only at high wavenumbers, it is of interest to compare them to the SFS force term. Aliasing
errors prevent a numerical method from conserving energy and hence can cause the solution to be unstable,

as shown by Kravchenko and Moin [5]. Aliasing errors can be removed, but this is computationally ex-

pensive, even in spectral codes where the 3/2-rule for dealiasing is applicable and is relatively straightfor-

ward to implement. Lele suggests a filtering method for dealiasing in physical space though this method

also requires extra computation [6]. Because of this cost and the difficulty of implementation in non-spectral

codes, dealiasing is not often performed in finite difference codes, even though these are also affected by

aliasing errors. Neglecting to dealias product terms may be acceptable in finite difference codes, however,

because the effect of aliasing on the total error may be somewhat reduced in finite difference schemes, as
shown below. We will compare aliasing errors in the nonlinear term to the SFS forcing, and examine the

error when finite difference schemes are used.

Fig. 9 compares spectra of the aliasing error incurred in computing the nonlinear terms to the SFS force.

The error is defined as the difference between the aliased and dealiased calculations for a particular dif-

ferencing scheme. Dealiasing is performed using the 3/2-rule in the spectral space calculations. Errors are

the largest for the spectral scheme. For finite difference schemes, aliasing is reduced because the modified

wavenumbers for finite difference methods decrease near the cutoff wavenumber. Finite differencing errors

reduce the amount of aliasing error present, however they lead to a less accurate representation of the
nonlinear terms at higher wavenumbers, as seen in the previous section.

Fig. 8. Global finite differencing error in the nonlinear term (NL) in the dealiased divergence form, for second-order finite differencing,

compared to the SFS force term for different filter–grid ratios. Data points are normalized by the total nonlinear terms and shown at

the 83, 163, 323, and 643 grid resolution locations.
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These results are consistent with Ghosal�s [3], however the shape and magnitude of the spectra are quite
different. Fig. 9 shows that for FGR¼ 2 the errors are larger than the SFS term only at high wavenumbers,
as opposed to Ghosal�s Fig. 5 where the aliasing error dominates in the entire range (for FGR¼ 1). In
addition, in Ghosal�s data the aliasing errors are more severe than the finite difference errors. In our case,
the aliasing errors are significantly smaller than the finite difference errors for FGR¼ 2. By comparing Fig.
10 for aliasing errors to Fig. 7 for finite difference errors, we see that the global SFS force dominates the

global aliasing error for all grid resolutions. This difference between our results and Ghosal�s may be due to
the nature of the dataset used. Even though the total aliasing error is less than the SFS force, aliasing errors

can have an adverse affect on the numerical solution because they are concentrated at high wavenumbers. It

is also in this high wavenumber range that SFS models may act to extract information to model the subfilter
scales.

Like finite difference errors, aliasing errors can be reduced by increasing the filter–grid ratio, as product

terms are more accurately represented on the grid when the original field is relatively smooth. The total

aliasing errors for different grid sizes and different filter–grid ratios are plotted in Fig. 11, with aliasing error

computed for the spectral differencing case and the divergence form of the nonlinear force. The total ali-

asing error decreases with increasing filter–grid ratio, as more of the motions are smoothed out and product

terms are more accurately represented on the grid. For FGR¼ 2 and 4, the total SFS force is larger than the
aliasing errors; however for FGR¼ 1, the aliasing error dominates, and is comparable in magnitude to the
finite difference error in Fig. 8.

In addition to the effects of the finite difference scheme and the filter–grid ratio on the aliasing error,

Blaisdell et al. [2] show that the form of the nonlinear terms can affect aliasing, so that proper choice of the

discrete representation of these terms can reduce aliasing without any removal schemes. To further dem-

onstrate the effect of aliasing error in the nonlinear terms, we evaluate the nonlinear terms using the ro-

tational, divergence, convective, and skew-symmetric forms. These forms are analytically equivalent (see

[5]):

Fig. 9. Energy spectra of the aliasing error in the nonlinear term in the divergence form, computed with spectral, second- and fourth-

order finite difference, and sixth-order Pad�ee schemes, compared to the SFS force term. Filter–grid ratio¼ 2; 323 grid.
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Fig. 10. Global aliasing error in the nonlinear term in the divergence form computed with spectral, second- and fourth-order finite

difference, and sixth-order Pad�ee schemes, compared to the SFS force term. Data points are normalized by the total nonlinear terms and

shown at the 83, 163, 323, and 643 grid resolution locations. Filter–grid ratio¼ 2.

Fig. 11. Global aliasing error in the nonlinear term (NL) in the divergence form with spectral differencing, compared to the SFS force

term for different filter–grid ratios. Data points are normalized by the total nonlinear terms and shown at the 83, 163, 323, and 643 grid

resolution locations.
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Rotational : uj
oui
oxj

�
� ouj

oxi

�
þ 1
2

oujuj
oxi

; ð2Þ

Divergence :
ouiuj
oxj

; ð3Þ

Convective : uj
oui
oxj

; ð4Þ

Skew-symmetric :
1

2

ouiuj
oxj

�
þ uj

oui
oxj

�
: ð5Þ

In discrete form, however, these expressions may not be equivalent, as this depends on whether the product

rule for differentiation holds numerically.

For dealiased spectral methods, differentiation is exact and therefore satisfies the product rule, so the

four formulations perform identically. The difference in the formulations without dealiasing can be sig-
nificant, as seen in Fig. 12 for spectral schemes, which shows spurious energy at the highest wavenumbers.

For finite difference schemes, even when all terms are dealiased the results are different because of trun-

cation errors. When second-order finite differences are used, the differences between these formulations are

reduced (not shown) from those in Fig. 12, but may still be significant for numerical stability, so it is

desirable to choose a formulation that gives the least error.

Fig. 13 shows spectra of aliasing errors for the different nonlinear formulations, compared to the SFS

force. The convective formulation gives the least aliasing error, followed by the skew-symmetric and di-

Fig. 12. Energy spectra of the nonlinear term with divergence, convective, skew-symmetric, and rotational formulations with deriv-

atives computed spectrally, but aliasing error not removed. The dealiased spectrum is also shown. Filter–grid ratio¼ 2; 323 grid.
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vergence forms; the rotational form gives the highest error. These results are slightly different than those of

the Fourier analysis of Blaisdell et al. [2] where the skew-symmetric form performs best, followed by the
convective form. However, this is perhaps accounted for by the fact that their results are for compressible

turbulence where the convective term consists of two parts; in incompressible flow this form reduces to one

term because of the continuity condition. When directly implemented into a spectral LES code, Zang [12]

and Blaisdell et al. [2] found the skew-symmetric form to be the preferred scheme because aliasing errors

were minimized. Kravchenko and Moin [5] also found that the skew-symmetric form performed best in a

finite difference code LES, while the convective form led to numerical instability which was linked to the

sign of the truncation error. This poor performance of the convective form is not reflected in the spectra of

errors shown here, indicating that a posteriori tests are needed to fully evaluate a particular scheme. We do,
however, find that our error estimates are comparable to those of Zang [12], who found that the aliasing

errors from the rotational form are about twice as large as those for the convection, divergence, and skew-

symmetric forms. Fig. 14 shows the global error for different grid sizes using different nonlinear term

formulations. For FGR¼ 2, the global errors from the rotational form are approximately two times larger
than the errors from the other formulations and are comparable in magnitude to the total SFS terms.

Overall we observe a similar trend to Ghosal in analyzing the aliasing errors, however, the magnitude

and shape of the spectra are different. In our case the aliasing error is concentrated at large wave numbers

and does not dominate the SFS terms throughout the spectrum as long as the filter–grid ratio is greater than
unity. Aliasing error is greatest for the higher-order finite difference schemes, and decreases with an in-

creasing filter–grid ratio. For a non-dealiased finite difference code, it may be possible to use a particular

formulation of the nonlinear terms to limit aliasing errors. It can be shown that aliasing errors of the two

terms in the skew-symmetric form help to cancel each other out, so this form is often well-behaved even

without dealiasing [5]. Blaisdell et al. [2] propose that the skew-symmetric version of the nonlinear terms

eliminates most of the aliasing error, and hence provides a cheaper alternative to implementing a dealiasing

scheme.

Fig. 13. Energy spectra of the aliasing error in the nonlinear term for the spectrally computed (but not dealiased) divergence, con-

vective, skew-symmetric, and rotational formulations, compared to the SFS force term. Filter–grid ratio¼ 2; 323 grid.
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6. Conclusions

Following the approach of Ghosal [3], the analysis of DNS data presented here demonstrates some of

the issues involved in the numerical representation of nonlinear terms and SFS terms. Results from our

DNS dataset are similar to Ghosal�s statistical analysis, confirming the need for careful selection of nu-
merical parameters in LES. A few specific differences were noted.

To ensure that the SFS terms are larger than numerical errors from calculation of the nonlinear terms,

the choice of the filter size is important. Our results indicate that the filter size should be at least twice as
large as the grid spacing for a sixth-order Pad�ee scheme. For a second-order finite difference scheme, the
filter size should be at least four times the grid spacing. Because of the effect of the modified wavenumber,

aliasing is less important for finite-difference methods than for spectral calculations; however, the repre-

sentation at high wavenumbers with finite difference methods is less accurate because of the larger trun-

cation errors. More accurate finite-difference methods can be used to represent the solution at higher

wavenumbers better, but dealiasing or a particular discretization (e.g., the skew-symmetric form) of the

nonlinear terms may then become necessary.

This study is a confirmation of Ghosal�s results for high Reynolds numbers for flows at moderate Rey-
nolds numbers. The above guidelines for LES are of course only directly applicable to moderate Reynolds

number flows such as the one considered here. However, the general recommendations that require a specific

filter–grid ratio to limit numerical errors in LES appear to apply to the entire range of Reynolds numbers,

from low-to-moderate Reynolds number engineering flows to high Reynolds number geophysical flows.
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