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Grid-point requirements for large eddy
simulation: Chapman’s estimates revisited

By H. Choi AND P. Moin

1. Motivation and objectives

In his 1979 landmark paper, Chapman (1979) estimated the required numbers of grid
points for large eddy simulation (LES) of turbulent boundary layers with and without
wall modeling, and emphasized the importance of wall modeling for LES of practical
flows of aeronautical interest. According to his calculations, the number of grid points

(N) required for wall-modeled LES is proportional to Re
2/5
Lx

, and a wall-resolving LES

requires N ∼ Re
9/5
Lx

, where ReLx
= ULx/ν, U is the free-stream velocity, Lx is the flat-

plate length in the streamwise direction, and ν is the kinematic viscosity. In arriving at
these Reynolds number dependencies Chapman used the following formulae:

cf = 0.045Re
−1/4
δ , (1.1)

θ =
7

72
δ, (1.2)

where cf is the wall skin friction coefficient, Reδ = Uδ/ν is the Reynolds number based
on the boundary layer thickness (δ) and the free-stream velocity, and θ is the momentum
thickness. Eq. (1.1) is the correlation of the skin friction coefficient with the Reynolds
number for circular pipe flow, and Eq. (1.2) is from the seventh-power velocity distribu-
tion law (Schlichting 1955). From Eqs. (1.1) and (1.2) and cf = 2dθ/dx, one can easily
show that for spatially evolving turbulent boundary layers

δ

x
= 0.37Re−1/5

x , (1.3)

cf = 0.0577Re−1/5
x , (1.4)

where Rex = Ux/ν, and x is the streamwise distance. Using Eqs. (1.3) and (1.4), Chap-
man (1979) showed that the required numbers of grid points for LES with and without

wall modeling are Nwm ∼ Re
2/5
Lx

and Nwr ∼ Re
9/5
Lx

, respectively. The weak point in this
derivation is that Eq. (1.4) is valid for low to intermediate Reynolds number range (i.e.,
Rex ≤ 106) and shows a significant deviation from experimental measurements at higher
Reynolds numbers (White 2005; Nagib et al. 2007). Also, the momentum thickness ob-

tained from Eq. (1.3), θ/x = 0.036Re
−1/5
x , does not fit the experimental data in the

literature (Monkewitz et al. 2007).
In the present study, we use a more accurate formula for high Reynolds number bound-

ary layer flow to suggest new grid-point requirements for wall-modeled and wall-resolving
LES. A power-law curve-fit approximation of the skin friction coefficient for high Reynolds
number range (106 ≤ Rex ≤ 109) is (White 2005)

cf = 0.020Re
−1/6
δ . (1.5)
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Again with the seventh-power velocity distribution, we obtain

δ

x
= 0.16Re−1/7

x , (1.6)

cf = 0.027Re−1/7
x . (1.7)

A recent study by Nagib et al. (2007) for high Reynolds number boundary layer flow sup-
ports this Reynolds number dependence of cf with a correction of the coefficient from
0.027 to 0.02358 for a better fit to the experimental data. Also, Monkewitz et al. (2007)
showed that a power-law curve-fit of the momentum thickness, θ/x = 0.016Re−0.15

x ,
agrees very well with the experimental data in 106 ≤ Rex ≤ 109, which is not very differ-

ent from the present one (θ/x = 0.0156Re
−1/7
x from Eqs. (1.2) and (1.6)). Accordingly,

Eqs. (1.6) and (1.7) are used to obtain new grid-point requirements for wall-modeled and
wall-resolving LES.

2. Grid point requirements for LES and DNS

In this section, we present the numbers of grid points required for wall-modeled LES,
wall-resolved LES, and direct numerical simulation (DNS).

2.1. Wall-modeled LES

We determine the required number of grid points for wall-modeled LES. Chapman (1979)
considered a cubic computational box with side length equal to the average boundary

layer thickness, δ̄, as defined by δ̄ = 1
Lx

∫ Lx

0
δ(x)dx, and distributed grid points uniformly

in the streamwise, wall-normal (y) and spanwise (z) directions. Then, he showed that

the total number of grid points required for wall-modeled LES is Nwm ∼ Re
2/5
Lx

. When
we follow the same procedure as in Chapman (1979) but use Eq. (1.6) for high Reynolds
number boundary layer flow, the total number of grid points for the entire computational

domain of dimensions Lx × δ(Lx) × Lz becomes Nwm ∼ Re
2/7
Lx

.
A more accurate estimation of Nwm requires an integration of the boundary layer

thickness in the streamwise direction (rather than taking the average boundary layer
thickness) (Spalart et al. 1997). At a given streamwise location x, we consider the grid
spacings of ∆x = δ/nx, ∆y = δ/ny, and ∆z = δ/nz in the streamwise, wall-normal (y)
and spanwise (z) directions, respectively. Then, for the entire computational domain of
dimensions Lx × δ × Lz, the total number of grid points for wall-modeled LES is

Ntotal =

∫ Lx

0

∫ Lz

0

nxnynz

δ2
dxdz. (2.1)

Because Eqs. (1.6) and (1.7) are valid in the high Reynolds number range, Eq. (2.1) can
be rewritten as

Ntotal = N(x < x0) +

∫ Lx

x0

∫ Lz

0

nxnynz

δ2
dxdz, (2.2)

where x0 is the streamwise location beyond which Eqs. (1.6) and (1.7) are valid. With
Eq. (1.6), the second term in Eq. (2.2) becomes

Nwm = 54.7
Lz

Lx
nxnynz Re

2/7
Lx

[

(

ReLx

Rex0

)5/7

− 1

]

, (2.3)

indicating that Nwm ∼ ReLx
. Eq. (2.3) can be represented in terms of different Reynolds
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number definitions: Nwm = 101 (Lz/Lx) nxnynz Re
1/3
δLx

[

(

ReδLx
/Reδx0

)5/6
− 1

]

= 233

(Lz/Lx) nxnynz Re
4/11
τLx

[

(

ReτLx
/Reτx0

)10/11
− 1

]

, where Reδx
= Uδ(x)/ν, Reτx

=

uτ (x) δ(x)/ν, uτ (=
√

τw/ρ) is the wall shear velocity, τw is the wall shear stress and
ρ is the density. Here, nxnynz is the number of grid points to resolve the cubic com-
putational volume of δ3 exterior to the viscous wall region. Chapman (1979) suggested
nxnynz = 2500, corresponding to nx = 10, ny = 25 and nz = 10. In most wall-modeled
LES to date the number of grid points nxnynz used to resolve the cubic computational
volume of δ3 has been in the range 1200 ∼ 33000 (nx = 5 ∼ 32, ny = 16 ∼ 32 and
nz = 15 ∼ 32) (Spalart et al. 1997; Cabot & Moin 1999; Nicoud et al. 2001; Piomelli &
Balaras 2002; Keating & Piomelli 2006; Pantano et al. 2008; Davidson 2009; Kawai &
Larsson 2010).

2.2. Wall-resolved LES

In this subsection, we estimate the required number of grid points for wall-resolving LES,
following the procedure used by Chapman (1979). Let us consider a small computational
box of dimensions dx× ly × dz within the viscous wall region, where l+y = lyuτ/ν ≈ 100.
Uniform grid spacings in the streamwise (dx) and spanwise (dz) directions to resolve the
wall region are denoted as ∆xw and ∆zw, respectively. Then, the number of grid points
in the computational box is

∆N =
dx

∆xw
ny

dz

∆zw
=

ny

∆x+
w∆z+

w

τw dxdz

ρν2
, (2.4)

where ny is the number of grid points stretched in the wall-normal direction, 0 ≤ y+ ≤ l+y .
The total number of grid points for the entire near-wall computational domain is obtained
by integrating Eq. (2.4) over the domain:

Nwr =
4

3

ny

∆x+
w∆z+

w

∫ Lx

x0

∫ Lz

0 τwdzdx

ρν2
. (2.5)

Here, as suggested by Chapman (1979), multiple blocks of nested grids with ∆x and ∆z
doubling outward from block to block are used to relieve the excessive grid point require-
ment; without using nested grids, the required number of grid points would increase by
about a factor of 10. With Eq. (1.7), the required number of grid points for wall-resolving
LES is

Nwr = 0.021
ny

∆x+
w∆z+

w

Lz

Lx
Re

13/7
Lx

[

1 −

(

Rex0

ReLx

)6/7
]

, (2.6)

showing Nwr ∼ Re
13/7
Lx

rather than Re
9/5
Lx

estimated by Chapman (1979). In terms of

different Reynolds number definitions, Nwr = 1.11 ny/(∆x+
w∆z+

w ) (Lz/Lx) Re
13/6
δLx

(

1 − Reδx0
/ReδLx

)

= 259 ny/(∆x+
w∆z+

w ) (Lz/Lx) Re
26/11
τLx

[

1 −
(

Reτx0
/ReτLx

)12/11
]

.

Chapman suggested ∆x+
w ≈ 100, ∆z+

w ≈ 20 and ny ≈ 10. Typically, ∆x+
w ≈ 50 ∼ 130,

∆z+
w ≈ 15 ∼ 30 and ny ≈ 10 ∼ 30 have been used in wall-resolving LES (see, for example,

Kravchenko et al. 1996).

2.3. DNS

The required number of grid points for DNS is proportional to Re9/4 (Rogallo & Moin
1984), where the grid spacings should be sufficiently fine to resolve the dissipation length
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scale. However, in this estimate, the Reynolds number is defined in terms of large eddy
characteristic velocity and length scales. We derive the required number of grid points for
DNS based on the streamwise length Lx, as was done for wall-modeled and wall-resolving
LES.

Let us consider a small computational box of dimensions dx × dy × dz inside the
boundary layer. The Kolmogorov length scale η (= (ν3/ǫ)1/4) is estimated from the

dissipation rate in a turbulent boundary layer, ǫ = ν
(

∂ui

∂xj
+

∂uj

∂xi

)

∂ui

∂xj
, where the overline

denotes time averaging. The dissipation rate is largest at the wall, i.e.,

ǫmax = ν

(

∂ū

∂y

∂ū

∂y
+

∂u′

∂y

∂u′

∂y
+

∂w′

∂y

∂w′

∂y

)

at the wall, (2.7)

and decays rapidly away from the wall. Here, u and w are the streamwise and spanwise
velocities, respectively, and the prime denotes the velocity fluctuations. Note that we
include the mean velocity gradient term in Eq. (2.7) because the main concern of the
present analysis is the grid resolution near the wall. Among the three terms on the right
hand side of Eq. (2.7), the first term is largest: the ratios of second and third terms to
the first one are much less than 1 (e.g., the ratio of second to first terms is about 0.16),
but they increase weakly with the Reynolds number (Hu et al. 2006; Örlü & Schlatter
2011). Therefore, we take the first term in Eq. (2.7) and use Eq. (1.7) to estimate the
Kolmogorov length scale in turbulent boundary layer. When uniformly spaced grids are
used along dx, the number of grid points to resolve the Kolmogorov length scale is

∆Nx =
dx

η
=

dx

x

x

η
= 0.116

dx

x
Re13/14

x . (2.8)

Then, the total number of grid points required for DNS in this small computational box
is

∆N =
dx

η

dy

η

dz

η
= 0.00157

dx

x

dy

x

dz

x
Re39/14

x . (2.9)

The total number of grid points for the entire computational domain is obtained by
integrating Eq. (2.9) over the domain (Lx × δ × Lz): i.e.,

NDNS = 0.00157

∫ Lx

x0

∫ δ(x)

0

∫ Lz

0

Re39/14
x

1

x3
dzdydx = 0.00157Lz

∫ Lx

x0

Re39/14
x

δ

x3
dx.

(2.10)
Using Eq. (1.6), we finally obtain

NDNS = 0.000153
Lz

Lx
Re

37/14
Lx

[

1 −

(

Rex0

ReLx

)23/14
]

, (2.11)

showing that NDNS ∼ Re
37/14
Lx

rather than Re
9/4
Lx

. Eq. (2.11) can be reformulated

in terms of different Reynolds number definitions: NDNS = 0.0434 (Lz/Lx) Re
37/12
δLx

[

1 −
(

Reδx0
/ReδLx

)23/12
]

= 101 (Lz/Lx) Re
37/11
τLx

[

1 −
(

Reτx0
/ReτLx

)23/11
]

. Note that,

in our derivation of Eq. (2.11), we have not considered using nested and/or stretched
grids. To use these grids, more information on the spatial development of the turbulent
dissipation rate is required.
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Table 1. Number of grid points required for numerical simulation of flow over a flat-plate airfoil
(with an aspect ratio of 4) using the wall-modeled and wall-resolving LES. Rex0

= 5 × 105,

nxnynz = 2500 and ny/
(

∆x+
w∆z+

w

)

= 1/200 in Eqs. (2.3) and (2.6) are used. Here, Rec = Uc/ν
and c is the chord length. Note that in this estimate we do not include the number of grid points
required for x < x0.

Rec Nwm (wall-modeled LES) Nwr (wall-resolved LES)

106 3.63 × 107 5.23 × 107

107 8.20 × 108 7.76 × 109

108 9.09 × 109 5.98 × 1011

109 9.26× 1010 4.34 × 1013

3. Conclusions

In this paper, we revisited Chapman’s estimate of the numbers of grid points required
to simulate turbulent flow above a flat plate of streamwise length Lx using wall-modeled
and wall-resolving LES. Using accurate correlations of the skin friction coefficient and
boundary layer thickness for high Reynolds number boundary layer flow, we showed
that the wall-modeled LES requires Nwm ∼ ReLx

, but the wall-resolving LES requires

Nwr ∼ Re
13/7
Lx

. On the other hand, DNS requires NDNS ∼ Re
37/14
Lx

. The approximate
numbers of grid points required for the flow over a flat-plate airfoil using LES with and
without modeling the viscous wall region are estimated in Table 1. As shown, the number
of grid points for the wall-modeled LES is one to three orders of magnitude smaller than
that for the wall-resolving LES, indicating the practical importance of wall modeling in
LES for high Reynolds number flows.

Lastly, we present the numbers of grid points required to simulate turbulent boundary
layer flow at a local Reynolds number Reδ using LES and DNS. For this purpose, we
consider a computational domain of dimensions αδ × δ × βδ in x × y × z directions,
where α and β are determined to include large-scale structures inside the boundary
layer. Then, the number of grid points required for the wall-modeled LES is Nwm =
αβ nxnynz, indicating that Nwm is independent of the Reynolds number. In the case of
wall-resolved LES, the number of grid points is obtained similarly as in Eq. (2.4): Nwr =

(4/3) ny/(∆x+
w∆z+

w ) τw/(ρν2) (αδ)(βδ) = 0.0133 αβ ny/(∆x+
w∆z+

w ) Re
11/6
δ . The number

of grid points for DNS is also obtained as in Eq. (2.9): NDNS = (αδ/η)(δ/η)(βδ/η) =

0.00099 αβ Re
33/12
δ .
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