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Abstract: We study Burgers Equation perturbed by a white noise in space and time.
We prove the existence of solutions by showing that the Cole-Hopf transformation is
meaningful also in the stochastic case. The problem is thus reduced to the anaylsis
of a linear equation with multiplicative half white noise. An explicit solution of the
latter is constructed through a generalized Feynman-Kac formula. Typical properties
of the trajectories are then discussed. A technical result, concerning the regularizing
effect of the convolution with the heat kernel, is proved for stochastic integrals.

1. Introduction

One of the first attempts to arrive at the statistical theory of turbulent fluid motion
was the proposal by Burgers of his celebrated equation

dtut(x) — vd2

xut(x) - ut(x)dxut(x), (1.1)

where ut(x} is the velocity field and v is the viscosity. As Burgers emphasized in the
introduction of his book [3] this equation represents an extremely simplified model
describing the interaction of dissipative and non-linear inertial terms in the motion
of the fluid. A clear discussion on the physical problems connected with Burgers
equation can be found in [10]. As shown by Cole and Hopf [5,7], Eq. (1.1) can be
explicitly solved and, in the limit of vanishing viscosity, the solution develops shock
waves.

Rigorous results have been recently established in the study of some statistical
properties: random initial data are considered in [1, 14, 16], while in [15] a forcing
term, which is a stationary stochastic process in time and a periodic function in space,
is added.

The study of Burgers equation with a forcing term is interesting in view of the
phenomenological character of (1.1). Since it represents an incomplete description
of a system, a forcing term can provide a good model of the neglected effects; in
particular a random perturbation may help to select interesting invariant measures.
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Translational invariance is preserved when (1.1) is perturbed by additive stochastic
processes stationary in space and time.

In principle one can think of a wide variety of stationary random forcing terms.
White noise in time and space is very often a candidate and the main motivations
behind this choice are a central limit type argument and the insufficient knowledge
of the neglected effects or external disturbances. A basic feature of white noise is its
singularity at small scales. This may be unphysical in certain cases, but, as stressed in
[2], it seems reasonable to expect that when a white noise of small amplitude is added
to a deterministic equation the effects of small scales should not be overwhelming
in determining the macroscopic behaviour of the system. In other words, using a
terminology from quantum field theory, the equation should exhibit some ultraviolet
stability. We also note that with this choice, due to the absence of time correlations,
the full Galilean invariance of (1.1) is preserved.

In this paper we establish an existence theorem for the Cauchy problem for Burgers
equation perturbed by an additive white noise in space and time. Furthermore the
theorem gives an explicit expression for the solution. In order to illustrate our result
let us write the equation and fix the notations

dtut(x) = vd2

xut(x) - ut(x)dxut(x) + εηt(x) , (1.2)

where t G R+, x G R, ε is the noise intensity and ηt(x) is white noise in space and
time, i.e.

E(ηt(x)ηt,(xf)) = δ(t - t')δ(x - x') . (1.3)

We realize the white noise ηt(x) as the generalized derivative of the brownian
sheet, i.e. ηt(x) = dtdxWt(x). The gaussian process Wt(x) has correlation function

Ew(Wt(x)Wt,(x')) = t Λ t'c(χ, x'"> > C(x, x') = Θ(xx') \x\ Λ x'\ , (1.4)

where α Λ b = minjα, 6} and θ is the indicator function of the set [0, oo). We remark
that C(x,x') is a Lipschitz function.

We write (1.2) as an integral equation using the Green's function of its linear part

t t

ut(x) = Gt * UQ(X) - ^ I dsG't_s * u2

8(x) + ε f G't_s * dWs(x) , (1.5)

0 0

where * is the convolution with the heat kernel

Gt(x) = (4ι/τrfΓ1/2 exp I - -̂  I , (1.6)

Gt * /(£) - I dyGt(x - y)f(y) (1.7)

G't * f ( x ) = ίdyθxGt(x - y)f(y) (1.8)

.e.

and

finally in (1.5) dWs(x) is the stochastic integral with respect to the brownian sheet
and UQ(X) is the initial condition. Equation (1.5) is meaningful for a wider class of
functions than (1.2), i.e. for functions which do not possess two derivatives.
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We shall construct a solution of Eq. (1.5) by using the Cole-Hopf [5, 7] transforma-
tion ut(x) = —2vdxlogψt(x). Proceeding formally it reduces (1.2) to the following
linear equation with multiplicative half white noise

dtψt(x) = vd2

xψt(x) - ξ- ψt(x)dtWt(x). (1.9)

In [12] analogous equations, but with white noise, have been studied. Their discrete
version have also been considered, e.g. [11].

Burgers equation (1.2) is invariant under translation of the space variable x. Due
to the presence of the half white noise dtWt(x) this property, as can be seen from
(1.4), does not hold for (1.9). We show in Sect. 4 how the translation invariance is
recovered through the Cole-Hopf transformation.

In order to study rigorously (1.9), one has to interpret it as a Stochastic PDE.
Since it contains a non-trivial diffusion the stochastic differential presents the well
known ambiguities. In order to obtain, via the Cole-Hopf transformation, the solution
of Burgers equation (1.5), the stochastic differential in (1.9) has to be interpreted in
the Stratonovich sense [8] as we show in Sect. 4. In the following we thus consider

dib+(x) = vdiψ+(x)dt Ψάx) ° dWΛx) (1.10)rτ χrτ 2v

which can be written in terms of the Ito differential as
/ ε \ p

dψt(x) = I vdl<ψt(x} + — V(x)ψt(x)\dt - — ψt(x)dWt(x) (1.11)

the extra term V(x) = ^ C(x,x) = ^\x\ arises from the formal expression of the
Stratonovich differential, see (1.4) above. In this paper we first construct, via a
generalized Feynman-Kac formula, a process which solves the mild form of (1.11),

t
n

ψt(x) = Gt * ΨQ(X) +-Z- Gt_s * (Vψsds - ψsdWs)(x), (1.12)
έ,l/ J

o

where ^0(x) is the initial condition, it is related to UQ(X) by UQ(X) = —2vdx log ψQ(x).
We then prove that the Cole-Hopf transformation can be applied to ψt(x) and it defines
a solution of (1.5).

In order to give a precise formulation of our results we have to specify in greater
detail the mathematical objects appearing in the previous equations.

2. Preliminaries and Results

Brownίan Sheet. We denote by (J?,J^, Pw) the probability space of the brow-
nian sheet Wt(x)\ for its properties see [17]. We introduce the filtration ,̂  =
σ{W^(x):(s,x) G [0,t] x R}, the minimal σ-algebra such that Ws(x) is measur-
able for all s < ί, x G R.

For Eq. (1.12) we need an integral with respect to the brownian sheet which is an
Ito integral in the time variable t and a Bochner integral in the space variable x. We
thus define, according to Walsh's terminology, the following martingale measure

Wt(A) = j Wt(x)dx, t eR+,Ae.^(R), (2.1)
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where J$(R) is the Borel σ-algebra of R. As Wt(x) is dPw-a.s. continuous the above
integral is well defined. For every A, Wt(A) is a .3% martingale; the cross variation of
the martingales Wt(A\ Wt(B) is

, W(B))t = t ί dx dxf C(x, x'). (2.2)

AxB

According to Walsh ([17], Chap. II) we can thus define the Ito-Bochner integral
with respect to the brownian sheet for ̂  progressively measurable functions / =
/(£,#, ω) such that

t t

Ew ί ds (/, Cf) = EW ί ds ί dx dx'C(x, x')/(s, x, ω)/(s, x', ώ) < oo . (2.3)

0 0

This integral will be denoted by

t

W) - ί Idxf(s,x,ω)dWa(x)\

o

(2.4)

it is a .̂  martingale with quadratic variation

I

, J(/)) t= ίds(f,Cf).
J

(2.5)

In the next sections we use the Burkholder-Davis-Gundy inequality (see e.g. [13],
IV 4.2) for the stochastic integral (2.4): for all p > 2 exists cp > 0 such that

d s ( f , C f )

1/2

ι

p/2

(2.6)

where here and throughout the paper || || is the norm in Lp(dPw). The inequality
(2.6) follows from the martingale property and (2.5).

Stochastic Curvilinear Integral. We shall construct a solution of (1.12) via a Feyn-
man-Kac formula. In this formula a Stochastic Curvilinear Integral that we now define
will appear. Let s ^ φs be a Holder continuous function from [0,t] to R and
sk = 2~nkt, k = 0 , . . . , 2n be a partition of [0, t], introduce

using (1.4) we have

t

lim Ew(M£(ί))2 = lim £ C(φSk,φSk)(sM - sk) = ί ds \Ψsn ̂ oo ^ n-^oo *—-J k k I
!„ J

(2.8)
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which has the geometrical interpretation of the area under the curve s h-» \φs\. It is
not difficult to verify that M™(t) is a Cauchy sequence in L2(dPw)\ its limit defines

Mφ(t) = I dWs(Ψs), tE[0,T]. (2.9)

Mφ(t) is a dPw-a.s. continuous gaussian process and a ̂  martingale. If s ι-» 7S is
another curve the cross variation of M (t) and M (t) is

(Mφ,MΊ)t = J dsC(Ψs,Ίs). (2.10)

o

We note that a weaker form of the integral (2.9) was introduced, in a different
context, in [4]. A general theory of stochastic curvilinear integrals is developed in
[6]; there the Lipschitz property of the process in the x variable is assumed, therefore
our case is not included in that theory.

Results. On the initial condition UQ(X) we assume the following. It is a continuous
function we write in the form UQ(X) = —dxUQ(x)'9 there exist α, c > 0 such that
for all x e R |ί/0(

χ)l < α(l + x|) and \UQ(X)\ < cexp(α|x|). These conditions are
satisfied when UQ is uniformly bounded. They include also some initial data with wild
oscillations at infinity, e.g. UQ(X) = ex sin ex is allowed.

We first state the results concerning the linear equation (1.12). We note that the
stochastic integral in that equation, according to (2.5), is well defined, in L2(dPw), if

t

j Gt_β*W8dWa)(x)

= Ew ds dy dyf Gt_s(x - y)Gt__s(x - y')

o

xC(y,y')ψa(y)ψa(y')«x>. (2.11)

We now introduce an auxiliary brownian motion which will permit to write a

solution of (1.12) as a generalized Feynman-Kac formula. Let dPxt — dydPyQ.x t,

where dPyQ.x t is the measure of a backward brownian motion with diffusion
coefficient 1v starting at time t in x and arriving at time 0 in y. We will denote

by Ef j t the expectation with respect to the probability measure dP^t. We stress that
the brownian motion β is independent from the brownian sheet W.

Proposition 2.1. Let ψ^ — exp < — UQ(x) >, the assumptions on UQ imply that ψQ G

Q(x) < c2e
o x , |^(x)| < c2e

αrr . (2.12)

Set

[0,T] x R,

-

= Ef >t(^0(/30)e 2zΌ ), (2.13)
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(i) Vp > 1 ψt(x) G Lp(dPw) and it satisfies condition (2.11).
(ii) dPw-a.s. ψt(x) is a solution of (1.12); t ι-> ψt(x) is dPw-z.s. locally Holder

continuous with exponent α < 1/2.
(iii) x ι-> ψtίαO is cLPw-a.s. differentiate; its derivative is

t

3xφt(x) = G't * φ0(x) + ̂ J G't_s * (Vφs ds - ψsdWs) (x) (2. 14)

o

Vp > 1 dxψt(x) G Lp(dPw\ Furthermore the application (t,x) ^ dxψt(x) is dPw-
a.s. locally Holder continuous with exponent a < 1/2 in space and a < 1/4 in time.
(iv) dP™ - a.s. ψt(x) > 0.

The properties (i)-(ii) are statements about the existence of the solution of (1.12),
(iii)-(iv) are required to perform the Cole-Hopf transformation.

From Proposition 2.1 we have the following theorem which states the existence
result for the stochastic Burgers equation (1.5).

Theorem 2.2. Set ut(x) = -2vdx logψt(x), with ψt(x) given by (2.13).
Then ut = ut(x) is a C°(R)-valued, ,^-adapted process, such that for all (t,x) G

[0,T]xR,
(i) Vp > 1 ut(x) G Lp(dPw); (t,x) ι-» ut(x) is dPw-a.s. locally Holder continuous

with exponent a < 1/2 in space and a < 1/4 in time.
(ii) ut(x) solves (1. 5) dPw-a.s.

The paper is structured as follows. In the next section we prove a regularizing
property for the stochastic convolution with the heat kernel; this is the main technical
result in the paper. In Sect. 4 we prove, assuming Proposition 2.1, Theorem 2. 2.
Proposition 2.1 is then proved in Sect. 5. Moment estimates for ψt(x) and log ̂ 0*0
are obtained in Sect. 6; they give some insight on the behaviour of ut(x) at large x.
Finally in Sect. 7 some open problems are discussed.

To simplify the notations we assume ε = 1, z/ = 1/2.

3. Stochastic Convolution with the Heat Kernel

We here extend to the stochastic case the regularization property of the heat kernel.
In particular we show that the brownian sheet integral of the convolution of the
heat kernel with a locally Holder continuous process is dPw-a.s. differentiable. The
derivative is dPw-a.s. locally Holder continuous. This is the result that permits us
to prove the differentiability of x ι— > ψt(x) in Proposition 2.1, hence the Cole-Hopf
transformation is meaningful also for the stochastic Burgers equation. This result,
however, has an independent interest.

Theorem 3.1. Let ξt = ζt(x) α continuous ^-adapted process, assume the following
properties hold for some p > 2:
(a) 3c l5α! > 0 such thatVx G R sup ||^(x)L < qe^W.

(b) 3c2 , α2 , α > 0 such that

V x , y e R , V ί e [ 0 , T ] \\ξt(y) - ξt(x)\\p < c2e
a^x\+^)\x - y\a . (3.1)

Define
t

Ft(x) = JGt_κ*(ξ,κdWs)(x). (3.2)

o
t(x) = JGt_s
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Then
(i) x i— > Ft(x) is Lp(dPw) differentiable; its derivative is

dxFt(x) = (3.3)

and ScΊX > 0 such thatVx G R sup H^F^x)!! < c /

1e
αιl χL

te[θ,τ]
(ii) x H-> dxFt(x) is Lp(dPw) locally Holder continuous with exponent less than a,

i.e. for any ε > 0,

e R,Vί € [0,T] (3.4)

(iii) If the conditions (a)-(b) are satisfied for all p < oo, in general with c and a
p-dependent constants, then x ι— > Ft(x) is also cLPw-a.s. differentiable; x ι— > dxFt(x)
is dPw-a.s. Holder continuous with exponent smaller than a.

Proof, (i) We first discuss in detail the case p = 2. Let us introduce the notations
Δhf(x) = h ~ l ( f ( x + h) - f(x)) and Rf(x, ft) = Δhf(x) - dxf(x)\ we will show
that

= Ewίdsίdy dyf RGt_s(x-y,h)

o
x flGf_e(z - y', h)C(y,yf)ξs(y)ξs(y') (3.5)

converges to 0 when ft —> 0. This requires an exchange of the limit ft —» 0 with the
integrals; due the specificity of this problem we cannot appeal to general theorems
but we will estimate explicitly the integral.

Trying to bound directly the integrand in (3.5) a non-integrable singularity (t — s)~l

appears. We thus need to exhibit a cancellation.
The key point is that / dy RGt_s(x — y, ft) = 0, so we can replace the right-hand

side of (3.5) by

t

ί ds ί dy dyr RGt_s(x - y, h)RGt_s(x - y'', ft)Ew(Γs(x, y, ?/)), (3.6)

where

, y, y7) - C(y, yf) (3.7)

We can now use the Holder continuity assumption. In fact from the hypothesis (a),
(b) and the global Lipschitz property for C(y, yf), we get the bound

sup Ew\Γa(x,y,y')\ < ceα

s€[0,T]
- x (3.8)
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Let us first consider in (3.6) the integral in dy', we show it can be bounded by
(t - sΓl/2 We have

/ dy' Rc (x - y',J y G t _ s v y , < (3.9)

\y'-x\<2\h\

on the other hand, using the Lagrange theorem we get

dy'AhGt_s(x-yf^y'\

\y'-x\>2\h\

f
<c / dz

\z\>2\h\
(t~

dz

\z\>2\h\
(t-

(3.10)

where |ζ| < \h\ and thus z + ζ\ > \ z\ for z\ > 2\h\.
We can proceed analogously for the term with dxGt_s(x - y).
Using the previous bound and the Holder property, we now prove that (3.6)

vanishes when h — * 0. Due to (3.9) and (3.10) it is enough to show that

τ

lim / ds . l ί dy Rc (x - y, h)ea^ \y - x\a = 0. (3.h^J ^/Γ^sJ y Gt~s y> > w \ v 11)

We consider first the region x - y\ < 2\h\. To prove (3.11) in this region we show
that the integrals arising from each of the three terms in RG converge to zero. We
have

(t - dy \dxGt.s(x - y)\ea^ \y - :

\y-x\<2\h\

"' / dZ'
\z\<2\h\

2s) '
Gt_s(z) < (3.12)

which is integrable in ds. Analogously

/2 ί dy \h
lGt_s(x

\y-x\<2\h\

\z\<2\h\

y - x

(t - s)«/

For the last term we use the following estimate on the heat kernel:

Gt(z) < - f-

(3.13)

(3.14)
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and integrate explicitly on ds. We have
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t

ί ds(t- I dy \h\~lGt_s(x + h - y)ea^ \y - x\

\y-χ\<2\h\
t

<cea\x\ I dz ίds(t-sΓl/2\h\-1 z\a C

\z\<2\h\ 0

= ceaM ί dz \h\~l\za log (ί + 7-^ΰ) <ceaMc(b)\h\a-b (3.15)
J \ 1^ ' I /

\z\<2\h\

for any b > 0 since the logarithm is bounded by any power. Then it is enough to take
b < a.

We now consider the case x - y\ > 2|ft |; we show that the integrand is uniformly
bounded; we are then allowed to take the limit h —> 0 inside the integrals and (3.11)
follows. We have

/ dy\dxGt_,(x-y)\eaM\y-x\a

J

ce

\y-x\>2\h\

°W I dz
l-fα

'(ί-S)V2"*-
- s)~l+a/2 (3.16)

and, proceeding as in (3.10),

dy'AhGt_s(x-y')^'\

\y'-x\>2\h\

dz

\z\>2\h\
(t-

(3.17)

(3.16) and (3.17) are integrable in ds.
This concludes the proof of the L2(dPw) differentiability of x ι-» Ft(x).
The case p > 2 can be treated essentially in the same way. In fact from the B.D.G.

inequality (2.6) we get

t t

ί RGt_s(h) * (ξadW3) (x) < c(p) j ds j dy dy1 RGt_s(x - y, h)

0 P 0

1/2

x IL/-Ί \x — y . ιϊ)(^ \y •) y )s<ϊ\?//ζ<ϊ\2/ /
^-*t — S ί> ύ

p/2

- t

ds dydy'\RGt_a(x-y,h)\

- o

x\RGt_a(x-y',h)\\\Γa(x,y,y')\\pμ . (3.18)
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The proof now continues as for p = 2. We remark that, due to the explicit dependence
on t of the heat kernel, Ft(x) defined in (3.2) is not a martingale; however the B.D.G.
inequality holds as follows from the following argument. Consider first

Gtι_s*(ξsdWs)(x) for ί < t , (3.19)

0

which is a .^ martingale; apply the B.D.G. inequality and then let t —> t{.
(ii) It follows exactly the same steps of (i), but with ΔhGt_s(x — y) — dxGt_s(x — y)

in (3.5) replaced by dxGt_s(x + h-y)- dxGt_s(x - y).
(iiϊ) From the above discussion we have

Vp > 1 3c:Vε > 0 \\Δh<φt(x) - dxφt(x)\\p < cha~£ (3.20)

the dPw-a.s. differentiability follows then from Kolmogorov Theorem (see e.g. [13],
12.1). Analogously the dP^-a.s. Holder continuity of x ι—>• dxFt(x) follows from
(ii). D

4. Cole-Hopf Transformation and Ito Calculus

In this section we show how Theorem 2.2 follows from Proposition 2. 1 . In order
to verify that the process ut(x) = —dxlogψt(x) satisfies Burgers equation (1.5) we
introduce a regularization. This procedure is needed to apply stochastic calculus. After
the regularization is removed we obtain a mild form of the Ito formula for a function
of the process ψt(x). Finally we show how translation invariance for Burgers equation
is recovered via the Cole-Hopf transformation.

Proof of Theorem 2.2. (i) From Jensen inequality and (2.13) we have

Ψ*W

 Ά -fdWs(βs)

<tW>o(A>)e ° )

As it will be done in the proof of (i) in Proposition 2.1 it can be verified that the right-
hand side of (4.1) is in Lp(dPw). From this and (iii) of Proposition 2.1 it follows that
ut(x) G Lp(dPw). The Holder continuity follows directly from statements (ii)-(iv) in
Proposition 2.1.
(ii) Let us introduce a regularization of the brownian sheet

W?(x) = δκ * Ws(x) = j dy δκ(x - y)Ws(y) , (4.2)

where δκ(x) = κh(κx) with h G CQ°(R) a smooth positive function with compact
support and / dx h(x) = 1. The covariance of the process (4.2) is t/\t'CK(x, xf), where
Cκ — δκ * C * δκ. Correspondingly we have ψ£(x) which satisfies the regularized
version of (1.11), i.e.

x)) dt - ,

^=0 )̂ = ^oW »

where Vκ(x) = | Cκ(x, x). We remark that the second derivative with respect to x
is now meaningful.



Stochastic Burgers Equation 221

Let us establish the convergence of the regularized process:

lim ||^(z)-t/>t(z)L = 0. (4.4)
K— >00

Using the Feynman-Kac representation (2.13) and denoting by Mβ(t) the curvilinear
stochastic integral for the regularized brownian sheet we have

\\ψ?(x) - ψt(x)\\p

< \\Eξtt(ψ0(β0)(e-Mβ(t) + e-MβV) |M£(ί) - Mβ(t)\)\\P

< Eβ

x>t( φ0(β0) \\e-Mew + e-MeV\\2p\\M$(t) - Mβ(t)\\2p) . (4.5)

From the bound \C * δκ'(x,y) — C(x,y)\ < cκ~~l we see that the second factor
converges, uniformly in β, to 0 as K — -> oo. From Proposition 2.1, the first factor is
bounded uniformly in K.

Using the expression (2.14) for dxψt(x) and following the same argument of
Theorem 3.1, it is easy to prove also the Lp(dPw) convergence of the derivative, i.e.

lim \\dx*ψϊ(x)-dx<φt(x)\\p = 0. (4.6)
, — tK,

Let u"(x) = — c^logVfte): we show it satisfies

t t

2<(x) = Gt * u,(x) - ds G't_s * «)2(x) + G't_s * dW?(x) . (4.7)

0 0

Integrating by parts we have the following identity:

(4.8)

where d means the derivative with respect to the integrated space variable.
Using (4.3) it is a simple Ito calculus exercise to compute the stochastic differential

(with respect to s) of Gt_s(x - y)\ogψg(y). By (4.8) one then obtains

t

, ,K, Λ ^ , , ̂  1 / J ^logψj (x) = Gt * Iogφ0(x) -\— I ds Gt_s

(4.9)

Differentiating the above identity we verify that (4.7) is satisfied. We stress that the
equation satisfied by uf(x), defined through the Cole-Hopf transformation, would not
have been (4.7) if we had interpreted (1.9) in the Ito sense.

We note that from (4.4) and (4.6) the Lp(dPw) convergence of the right-hand
side of (4.8) follows, as K -̂  oo. That limit defines d^ψ s(x) / 'ψ s(x) when convoluted
with Gt_s. In fact, whereas dxψt(x) exists, as stated in Proposition 2.1, the second
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derivative of ψt(x) does not have a meaning in the classical sense. Moreover each
term in (4.9) converges to the non-regularized one. In the limit K —» oo (4.9) is then
a mild Ito formula.

In order to complete the proof of Theorem 2.2 we now take the limit AC —» oo
in (4.7) and show that each term converges, in L2(dPw), to the corresponding non-
regularized one in (1.5).

Let us discuss first the stochastic integrals. Along the same line of Theorem 3.1 it
can be easily proved that

lim
K—>oo

- dWs) (x) f\ (4.10)

We now consider

ψt(x)

which converges to 0 as K —> oo by (4.4), (4.6) and (i).
For the last term we have

G' * («)2 - K)2)0r)

t

< Jdsjdy \dxGt_s(x - y)\ \\uκ

s(y)

(4.11)

- u (4.12)

and \\u^(y) - us(y)\\4 can be bounded as in (4.11) by a uniformly integrable function
vanishing in the limit K —> oo.

This implies statement (ii) of the theorem: let us write Eq. (4.7) and (1.5) in the
form Fκ(uκ) = 0 and F(u) = 0. We have

\\F(u)\\2 < \\F(u) - Fκ(u«)\\2 + \\Fκ(uκ)\\2 (4.13)

the first term on the right-hand side vanishes as K —> oo, the second one is identically
0. D

Translation Invariance. We conclude this section showing how translation invariance
for Burgers equation (1.5) is recovered. Let us define the brownian sheet with respect
to a point x = a instead of x = 0, i.e. Wt°(x) = Wt(x) - Wt(a\ whose covariance is

Ewa(W?(x)W?,(x')) = t Λ t'θ((x - α) (x' - α)) \x - a\ Λ \x' - a\ . (4.14)

The solution of (1.12) with Wt(x) replaced by W£(x) is then
t t t

-fdWg(βs) - f dWs(a) - f dWs(βs)

In the above expression the dependence on α is factorized, so that, when the Cole-Hopf
transformation is performed, it cancels out completely. We remark that the choice of
α is related to the possibility to multiply ψt(x) by an arbitrary time dependent factor
which disappears when (4.9) is differentiated to obtain (4.7).
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5. Solution of the Linear Equation

In this section we study the linear equation with multiplicative half white noise (1.11);
we prove the existence of a solution for its mild form (1.12). This solution is con-
structed explicitly through a generalized Feynman-Kac formula (2.13). We then study
the typical properties of the trajectories: they are strictly positive and differentiable
with respect to x. The last property is a direct application of Theorem 3.1.

Proof of Proposition 2.1. (i) It is enough to assume p G N. Let β — {/3l}™=1 be a
family of n independent brownian motions; then, under dPw, {Mβi(t)}f=l are mean
zero Gaussian processes with covariance matrix given by

(5.1)

This is a direct consequence of the gaussian property of the system {Mβτ(t)}f=l and
(2.10).

We have

-MgZ(t)

< cξ exp <j - p2\x\t + αp|x| + — (5.2)

From the above bound it is easy to check that condition (2.11) is satisfied.
(ii) We now verify that ψt(x) given by the Feynman-Kac formula (2.13) is the solution
of (1.12). We have

dy Gt_s(x - β)) (V(y)ds - dWs(y)) , (5.3)

the kernel Gt_s(x — y) can be interpreted as the transition probability of the brownian
motion βs. Hence, using the Markov property, (5.3) equals

'̂ v ° ° 7
\ n

e~Mβ(s\V(βs) ds - dWs(βs)) 1 . (5.4)
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Computing the stochastic differential (with respect to W) of exp{— Mβ(s)} we get

Thus (5.4) is equal to

-/dtyβ(/3β)
Ef,t(^o(A))(e ° - 1)) = ̂ t(z) - Gt * V>o(*) , (5-6)

and Eq. (1.12) is verified.
We now discuss the continuity of (t,x) -̂> ψt(x). Using the Feynman-Kac

representation (2.13), we prove the following bound. For any p > 1, 3c, α > 0
such that Vt G [0, T]

\\φt(x) - ψt(y)\\p < ceaW+W\x - y\{/2 . (5.7)

From the triangular and Cauchy-Schwartz inequalities we get

H^Or) - φt(y)\\p < ||E^((^0(/30 + x) - ^(β, + y))e-M^^)\\p

(€) - Mβ+y(t)\)\\P

on the other hand, \\Mβ+x(t) - Mβ+ \\2p can be bounded by

/J ds (C(βs + x,βs + x)- 2C(βa + x,βs+y) + C(βs + y,βs + y))

o

<ctl/2\x-y\1/2. (5.9)

Finally (5.7) follows from (5.2), (5.8) and (5.9).
From (1.12), we can obtain

\\<φt(x) - ψa(x)\\p < ceαW\t - si 1/ 2 . (5.10)

We do not prove (5.10) because in the proof of (iii) an analogous, but technically
harder, estimate for dxψt(x) will be obtained.

Using the Kolmogorov Theorem, from (5.7) and (5.10), it follows the dPw-a.s.
local Holder continuity of exponent α < 1/2 for (ί, x) >-» ψt(x).
(iii) We now show, using (1.12), that x \-+ ψt(x) is Lp(dPw) and dPw-a.s.
differentiable; the derivative is given by (2.14).



225Stochastic Burgers Equation

Let Δhf(x) = h~\f(x + h)- /(x)), then from (1.12) we get

£

Δhψt(x) = ΔhGt * ψQ(x) + J ΔhGt_s * (Vφads - ψsdsW)(x) (5.11)

o

and, for dxψt(x) given by (2.14), we have

\\Δh φt(x) - dxψt(x)\\p < \(ΔhGt - G't) * ψΰ(x)\

ds(ΔhGt_a-G't_a )*ψa(x)

t

j(hGt_a-G't_a)*WadWa)(x)

From the assumptions on the initial condition φQ we have

lim ΔhGt * ψ0(x) = G't* ψ0(x).

(5.12)

(5.13)

In Theorem 3.1 we showed in detail the convergence to zero of the last term in (5.12);
the second one is easier.

Let us discuss the continuity property of the derivative. From (3.4), repeating the
above discussion, it is easy to see that x H^ dxψt(x) is Lp(dPw) locally Holder
continuous with exponent α < 1/4.

This implies for x \—> ψt(x) a better estimate than (5.7): it is locally Lipschitz, i.e.

(5.14)

Applying again Theorem 3.1 with this bound instead of (5.7) we prove that x
dxψt(x) is Lp(dPw) locally Holder continuous with exponent α < 1/2,

9xψt(x) - dyψt(y)\\ < ce«M+ (5.15)

We now discuss the Lp(dPw) Holder continuity of t ̂  dxψt(x). The bound (5.10)
of (ii) is obtained in the same way. We consider p — 2, the general case follows via
the B.D.G. inequality as in Theorem 3.1.

Let k > 0, from (2.14) we have, omitting the dependence on the space variable x,

£+fc £

j' dSG't+k_s*(ψsV)- jdsG't_s

0

t+k

Ie" k^s * (ψsdWs) -s s

o o
!a-* ( φadWa) . (5.16)
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We consider in detail just the term with the stochastic integral in (5.16); we have

t+k

/G't+k_a*(ψadWa)-jG't
0 0

_a*( φad(Va)-jG't_a*( φadWa)

0

t+k

?'t+fc_β * ( φβdW,)

t-k

t-k

I (G't+k_s - G't_. ) * (ψsdWs) (5.17)

computing the L2(dPw) norm, subtracting, as in (3.6), the appropriate null term

t+fc

Ew I ds j dydy'dxGt+k_s(x-y)dxGt+k_s(x-yl)C(yl,x)φs(yl)φs(x)

and using the Lipschitz property for x ι-» ψt(x\ the first term in (5.17) can be bounded
by

r t+k

ceα\x\

- t

j dzdz'\8zGt+k_s(z)\ \dz,Gt+k_a(z')\ |z|e«*l*W*Ί:

t+k

ί -1/

J

1/2

The second term in (5.17) is analogous, for the third term we have

dz'\dz,Gt+k_s(z') - < c(t -

and using Lagrange theorem

dz\dzGt+k_s(z) -

dzk
^2

3 +
(t - s 4- σ)5/2 V t - s

l >fc

2"ε f dz\z\3+2ε(t-sr

2(t-s+σ) f,
α\z\

-SJ
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as σ G [0, k] and t — s > k. On the other hand,

dz\dzGt+k_a(z)-dzGt_s(z)\\ze"W

dz

hence (5.17) is bounded by cexp(a\x\)k* ε .
We have thus proved

\/p> l , 3 c > 0 : V ε >0

From the Kolmogorov Theorem follows the dPw-a.s. local Holder continuity of
(t,x) i—> dxψt(x). The Holder exponent is a < 1/4 in time and a < 1/2 in space.

(iv) We use the expression of ψt(x) given by the Feynman-Kac formula (2.13).
From the hypotheses on ψ0 and Jensen inequality we have

ί / } \ ϊ
φt(x) > c, exp <^ - E%tt a\β0\ + / dW8(β8) V (5.19)

I V J I I

as
/ \ \ ^

J ίdWs(βs)\ ) <oo;
\ J I i

the exponent on the right-hand side of (5.19) is dPw-a.s. finite, hence ψt(x) > 0
dPw-a.s. D.

6. Moment Estimates

In this section we conclude the analysis for the moments of ψt(x) initiated in Sect. 5.
We obtain a bound from below. We then estimate the moments of log^t(x) which
grow slower. They will give some insight on the behavior of ut(x) for large x.

Moment estimates for ψt(x)

Proposition 6.1. Let ψt(x) as in Proposition 2.7, p G N; then

v ±p2\x\t-ap\x\ + ±((pt-2a)3-(2a}3) _cp2t3/2
ηe e

where a is the constant appearing in (2.12).

Proof. Formula (5.2) gives the estimate from above of the pth moment of ψ. We now
estimate from below H^H^. We assume ψQ(x) > c > 0, i.e. UQ(x) uniformly bounded
and we obtain (6.1) with α = 0. The general case is only more tedious.
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From (5.2) we have

( ^

^0(^)... ψ0φexp Γ- ds

eχPS ~

We introduce the brownian motion 7S =
1

I . (6.2)

. The first term in the exponent of

(6.2) is the integral of 7S, the second one is independent on it; the expectation thus
factorizes and we get

^ ί D (6.3)

These results do not imply intermittence in the sense of [11] because the field is not
spatially ergodic.

Moment estimates for logψt(x)

We now study the moments of log^(x). We start with the estimate from above.

Proposition 6.2. Let ψt(x) as in Proposition 2.1, then for either t or \x large enough
(i) for p = 2n + 1, n G N,

\χ\t + a\x\ + ((t + 2α)3 - (2α)3)P, (6.4)EW(\OgPψtW}^ |C!

(ii) /or p = In, n € N,

<cf[p+|x
4!

. (6.5)

Proof, (i) Let L G C°(R+) be the convex hull of the function ξ ι-> logp ξ, by Jensen
inequality

< Lp(ce* ) (6.6)

as Lp is an increasing function. We note that Lp(ξ) = logp ξfoΐξ>ξp = exp{p— 1}.
Thus, when either x\ or t are large enough, we get the result.

(ii) For p even function ξ >-> logp ξ is monotone decreasing for ξ G (0,1],
monotone increasing for ξ > 1 and concave for ξ > ξp. We bound separately the
three regions. We have

Ef,t
- /rfw ΊV'/ / /

< [α(l + \x\) + cJp((t\x\Ϋ'2 + ί3/4)]p , (6.7)

where the last inequality is obtained by explicit computations of gaussian integrals.
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On the other hand
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Denote by Έw the expectation with respect to dPw conditioned to the event {ψ >
by Jensen inequality we finally have

logp

((t + 2α)3 - (2α)3) - log P > (6.9)

where we used the bound in (6.1) for p = 1. Since for ξ G [0, 1], ξ\ogp ξ < (c/e)p,
(6.5) follows from (6.7), (6.8) and (6.9). D

We now bound from below the moments of logψt(x) under the following
restrictions: there exist c l 5 c2 > 0 such that for all x G R, 1 < cl < ψQ(x) < c2.

Proposition 6.3. Let ψt(x) as in Proposition 2.1, then
(i) forp = 2n+l,ne N,

Ew(logp ψt(x)) > ^>\cp[\x\(t Λ (2x2)) - (t Λ (2x2))3/2

+ θ(t - 2x2) . (t3/2 - |x|3)]^".

(ii) For p = 2n, n e N

Ew(logpψt(x)) > <((p!)3 (ί2x2 + ίV)1/4 - cfp!

Proof, (i) Since logp ξ is increasing for p odd, by Jensen inequality we have

log"

(6.10)

(6.11)

5^ Clog's

3',/32 /
B,t J (6.12)

The bound (6.10) can then be obtained after an explicit computation of the
expectation in (6.12).

(ii) Let X = ΨoCA)) exP{~-^(*)}> following the same argument of (6.9), we have

logp X) < 2"

= 2ϊ>-1(logp ψί

(p/ef)

(6.13)
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and

<ί(

Thus

(6.15)

As {X > 1} 3 {M^(t) < 0}, taking the expectation with respect to dPw of (6.15)
the result follows. D

As far as ut(x) = —dxψt(x)/ψt(x) is concerned, we have the following

Proposition 6.4. Let ut(x) as in Theorem 2.2, then for almost all t G [0,T] and
V<S>0,

=0. (6.16)

Proof. In Sect. 4 we obtained the identity

t_s * W

2

5(x) - Gt_sdWs(x) , (6.17)

0 0

taking the expectation with respect to dP™, Proposition 6.2 implies

t

I dsGt_s* IKII^(x) <c(l-h(t-|-α)|x | + (ί + 2α)3), (6.18)

o

from which (6.16) is derived. D

7. Concluding Remarks

We conclude with some remarks on open problems.
In this paper we have not discussed at all the questions of uniqueness of the solution

we have constructed. This is not a simple problem. The difficulty comes from the
unboundedness of the space domain. In the unperturbed case (1.1) uniqueness was
obtained by Hopf [7], by reducing the problem to the uniqueness of positive solutions
of the heat equation. In our case this approach presents various difficulties. In Sect. 4
we proved that to a class of solutions of the linear equation (1.12) can be associated a
class of solutions of the Burgers equation (1.5). The converse statement is not obvious
as the application of Ito calculus requires the introduction of a regularization which
in this direction is more difficult to remove. Furthermore the uniqueness problem for
(1.12) is difficult due to the bad behavior of the random potential at infinity. On the
other hand, in an unbounded domain, a naive attempt to obtain a Gronwall inequality
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for an appropriate norm of the solution of Eq. (1.5) fails due to the structure of the
nonlinearity.

In the study of the stochastic Burgers equation a most relevant question is the
behavior of the solutions when v or ε or both tend to zero. Here we have to distinguish
different regimes. We consider the solution over a given time interval.
• v finite, ε —> 0. The study of this case amounts essentially to the construction of a
large deviation theory for the Burger equation. The main difficulties in the construction
of such a theory are again connected to the infinite domain.
• ε finite, v —> 0. A way to approach this problem at the formal level is to evaluate
the Feynman-Kac formula by a Laplace type approximation. One obtains a formal
expression which is the same one would obtain by solving the stochastically perturbed
inviscid Burgers equation via the method of characteristics. This formal expression is
a distribution valued process. This means that its square is not well defined and the
mathematical interpretation of the stochastic inviscid equation is not apparent; some
renormalization may be necessary. The relationship of these limit solutions, if they
exist, to shock waves should be investigated. This problem has some similarity to
that considered by Lax in [9].
• When ε, v —> 0, on the basis of heuristic arguments, the solution should converge
to those of the unperturbed inviscid equation. However this conclusion may be false
as the result may depend on the way the double limit is taken.

Acknowledgements. We thank R. Seneor for useful discussions and the Ecole Polytechnique for
hospitality at an early stage of this work, S. Olla for calling our attention to the Lax phenomenon
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Note added in proof. After completing this work we received the following preprints, The Burgers
Equation with a Noisy Force by H. Holden, T. Lindstr0m, B. 0ksendal, J. Ub0e and T.-S. Zhang,
where the stochastic Burgers equation is studied in the framework of white noise calculus; Stochastic
Burgers Equation by G. Da Prato, A. Debussche, R. Temam where a detailed study on a finite space
interval is made with a different approach.
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