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MOST



Monin-Obukhov Similarity Theory Recap

Recall from the previous lecture that we used Buckingham Pi
theory to relate non-dimensionalized gradients to fluxes in the
atmospheric surface layer.

MOST Assumptions

• flow is quasi-stationary and horizontally-homogeneous

• turbulent fluxes are constant with height within the ASL.

• molecular exchanges are small compared to turbulent
exchanges.

• rotational effects are neglected.

• influence of surface roughness, boundary-layer depth, and
geostrophic wind are accounted for by τw/ρ.
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Monin-Obukhov Similarity Theory Recap

Scaling variables

u∗ ' (−w′u′)1/2

θ∗ = −(w′θ′)/u∗
θv∗ = −(w′θ′v)/u∗
q∗ = −(w′q′)/u∗
b∗ = −(w′b′)/u∗
L = −u3∗/(κB0) = u2∗/κb∗

where L is the Obukhov Length, which describes the characteristic
height of the sublayer of dynamic turbulence.

5 / 32



Monin-Obukhov Similarity Theory Recap

Similarity Theory

• Similarity Theory showed that mean flow variables or average
turbulence quantities, when normalized by z, L, u∗, θ∗, etc.,
are functions of ζ = z/L only!

• ζ helps determine the relative importance of buoyancy versus
shear effects, which makes it akin to the Richardson number
(Ri).

• z � L, buoyancy dominates
• z � L, shear dominates
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Monin-Obukhov Similarity Theory Recap

Similarity Theory

• We found these flux-profile relationships

κz

u∗

∂u

∂z
= φm (ζ)

κz

θ∗

∂θ

∂z
= φh (ζ)

κz

θv∗

∂θv
∂z

= φv (ζ)
κz

b∗

∂b

∂z
= φb (ζ)

κz

q∗

∂q

∂z
= φq (ζ)

• Where φ terms are universal functions of z/L and we often
assume φh = φv = φb = φq.
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Monin-Obukhov Similarity Theory Recap

Similarity Theory

• We chose the empirical forms of the similarity functions as
derived by Dyer (1974).

neutral φm = 1 φh = 1

unstable φm = (1− 16ζ)−1/4 φh = (1− 16ζ)−1/2

stable φm = 1 + 5ζ φh = 1 + 5ζ

• In totality, MOST allows us to determine turbulent fluxes
from the mean gradients (or gradients from fluxes)
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Monin-Obukhov Similarity Theory Relationships

• Let’s relate these functions to Ri

• The flux Richardson number and gradient Richardson number
are, respectively:

Rif =
w′b′

w′u′∂u/∂z
and Ri =

∂b/∂z

(∂u/∂z)2

• Recall our scales: −w′u′ = u2∗ and −w′b′ = u∗b∗.

• And use our flux-profile relationships:

κz

u∗

∂u

∂z
= φm and

κz

b∗

∂b

∂z
= φb

• With the Obukhov Length

L = −u3∗/(κB0) = u2∗/κb∗
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Monin-Obukhov Similarity Theory Relationships

• Flux Richardson number

Rif =
w′b′

w′u′∂u/∂z
=

−u∗b∗
−u2∗∂u/∂z

=
u∗b∗κz

u3∗φm
=

b∗κz

u2∗φm
=

z

Lφm

Rif = ζφ−1m

• Gradient Richardson number

Ri =
∂b/∂z

(∂u/∂z)2
=

b∗

κz
φh

u2∗
(κz)2

φ2m

=
κzb∗φh
u2∗φ

2
m

=
zφh
Lφ2m

Ri = ζ
φh
φ2m
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Monin-Obukhov Similarity Theory Relationships

• Let’s use K-theory to derive expressions that relate similarity
functions to the turbulent Prandtl and Schmidt numbers.

−Km
∂u

∂z
= w′u′ −Kh

∂b

∂z
= w′b′

Km
∂u

∂z
= u2∗ Kh

∂b

∂z
= u∗b

Km =
u2∗
u∗

κz
φm

Kh =
u∗b∗

b∗

κz
φh

Km =
κzu∗
φm

Kh =
κzu∗
φh
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Monin-Obukhov Similarity Theory Relationships

• The Prandtl and Schmidt numbers are defined as:

Pr = ν/νh and Sc = ν/νq

• Analogously, we define their turbulent versions:

Prt = Km/Kh and Sct = Km/Kq

• Thus,

Prt =

κzu∗

φm
κzu∗

φh

=
φh
φm

Sct =

κzu∗

φm
κzu∗

φq

=
φq
φm

• Recall, however, that we assume φq ≈ φh, thus

Prt = Sct =
φh
φm
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Monin-Obukhov Similarity Theory Relationships

• Let’s relate Prt and Sct to Rif and Ri :

Ri = ζ
φh
φ2m

= Rif
φh
φm

= RifPrt = RifSct

or

Prt = Sct =
Ri

Rif
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Monin-Obukhov Similarity Theory Relationships

• Consider unstable conditions using Dyer’s functions

φm = (1− 16ζ)−1/4 φh = (1− 16ζ)−1/2

Ri = ζ
φh
φ2m

= ζ ≤ 0

Rif = ζφ−1m = ζ(1− 16ζ)1/4 ≤ 0
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Monin-Obukhov Similarity Theory Relationships

• Consider stable conditions using Dyer’s functions

φm = 1 + 5ζ φh = 1 + 5ζ

Ri = ζ
φh
φ2m

= ζφ−1m = Rif =
ζ

5ζ + 1
≥ 0

• We can rearrange as

ζ =
Ri

1− 5Ri
0 ≤ Ri < 0.2

• Note that for Ri = 0.2, ζ →∞ (L→ 0). This means that
there is no turbulence beyond this value. Thus, the Dyer
functions point to Ric = 0.2.
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Surface-Layer Logarithmic Wind Profile

• Consider the case of neutral stratification (φm = 1)

κz

u∗

∂u

∂z
= 1

∂u

∂z
=
u∗
κz

now integrate

u =
u∗
κ

ln z + C

where C is a constant of integration.

• This describes the famous logarithmic wind profile in the
atmospheric surface layer.

• Recall that wind should adhere to no-slip conditions (u = 0)
at the surface. However, notice that there is discontinuity at
z = 0. This points to the fact that the flow becomes laminar
for very small z and brings about the concept of surface
roughness.
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Aerodynamically Smooth and Rough Surfaces

• If we take u∗ as the velocity scale and δ` as the length scale of
turbulence in the ASL, then the Reynolds number criterion for
laminarization of the flow close to the surface (wall) is

Reδ =
u∗δ`
ν
∼ 1

where ν is kinematic viscosity

• Thus, turbulence does not exist at distances from the wall of
the order and less than δ` ∼ ν/u∗ (note: the oft-used viscous
wall units are defined as z+ = z/δ` and u+ = u/u∗)

• Experimental data suggest that δ` ∼ 5 ν/u∗, where the layer
defined with this depth is called the viscous sublayer.
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Aerodynamically Smooth and Rough Surfaces

Aerodynamically Smooth

• If roughness elements of characteristic size zr are deployed in
the viscous sublayer and zr � δl, then the surface is
aerodynamically smooth.

• Lab data shows that surfaces are smooth for zr ≤ 5ν/u∗.

• For the atmosphere, this corresponds to zr . 1 mm.

• However, most elements in the ASL are larger than 1 mm.

• Thus, most surfaces in the ASL are aerodynamically rough
(exceptions: ice, mudflats, snow, water under light wind).

Aerodynamically Rough

• The surface is aerodynamically rough for zr � δl.

• Lab data shows that surfaces are rough for zr ≥ 75ν/u∗.
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Aerodynamic Surface Roughness Length

• In the case of a smooth surface, a turbulence flow regime
represented by a logarithmic profile us possible at a height
above ν/u∗ (well above surface roughness elements).

• In the case of a rough surface, the flow is already turbulent in
the near vicinity of surface roughness elements. Measurements
show that u = 0 at some level close to zr (actually just
below).

• Let’s introduce the idea of the surface roughness length.
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Aerodynamic Surface Roughness Length

• Recall the generic log-law profile:

u =
u∗
κ

ln z + C

• We will introduce a reference level z0 where u = 0, defined
through

C = −
(u∗
κ

)
ln z0

• This leads to the neutral log-law profile

u =
u∗
κ

ln
z

z0

where z0 is called the aerodynamic surface roughness length
(or surface roughness length) for momentum.
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Mean Flow Above a Smooth Surface

• For smooth surfaces, z0 defines the lower asymptotic limit of
the logarithmic wind profile, below which the mean flow
velocity is no longer a characteristic of turbulence.

• We can rearrange the neutral log-law expression and scale
height by δ` = ν/u∗

u

u∗
=

1

κ
ln

z

ν/u∗
+

1

κ
ln
ν/u∗
z0

u

u∗
=

1

κ
ln

z

ν/u∗
+ Cs

where

Cs =
1

κ
ln
ν/u∗
z0

.

Lab data suggest that Cs ≈ 5
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Mean Flow Above a Smooth Surface

• The final form is given by

u

u∗
=

1

κ
ln
zu∗
ν

+ 5 or u+ =
1

κ
ln z+ + 5

• We can also approximate z0:

Cs =
1

κ
ln
ν/u∗
z0

ν/u∗
z0

= eκCs

z0 = e−κCs
ν

u∗
≈ 0.1

ν

u∗

Or in other words, the surface roughness length for a smooth
surface is approximately 10% of the viscous sublayer depth.
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Mean Flow Above a Smooth Surface

• The final form is given by

u

u∗
=

1

κ
ln
zu∗
ν

+ 5 or u+ =
1

κ
ln z+ + 5

• We can also approximate z0:

Cs =
1

κ
ln
ν/u∗
z0

ν/u∗
z0

= eκCs

z0 = e−κCs
ν

u∗
≈ 0.1

ν

u∗

Or in other words, the surface roughness length for a smooth
surface is approximately 10% of the viscous sublayer depth.
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Mean Flow Above a Rough Surface

• For rough surfaces, z0 is directly interpreted as the level where
mean flow velocity vanishes. So,

u =
u∗
κ

ln
z

z0
where u = 0 at z = z0

• In the real world, z0 is a complex function of surface
geometry, involving zr as one of many parameters.

• Generally, z0 increases with increasing zr.
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Mean Flow Above a Rough Surface

• In reality, there is no real consistent average velocity observed
in a flow down to z0 (below zr).

• The velocity field obeys the log-law only at some distance
z � z0 above the surface.

• In this sense, z0 is also the asymptotic limit of the logarithmic
velocity profile.

• In order to make more applicable, we introduce the concept of
the displacement height d.

u =
u∗
κ

ln
z − d
z0

where u = 0 at z = z0 + d

• Far above the displaced height (z � d), d is ignored

u =
u∗
κ

ln
z − d
z0

= u =
u∗
κ

ln
z/d− 1

z0/d
≈ u =

u∗
κ

ln
z

z0
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z0 Parameterizations for Sand, Snow, Water

Snow, Sand

• z0 for snow/sand increases with increasing wind speed.

• As wind speed increases, the material moves more actively
and transports more effectively away from the surface.

• Empirical expression:

z0 =
αsu

2
∗

g

where αs = 0.016 and u∗ > u∗t. Here, u∗t ≈ 0.12 m s−1 is a
threshold frictions velocity. In the rough wall case, z0 may be
considered constant for snow/sand when u∗ < u∗t.
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z0 Parameterizations for Sand, Snow, Water

Water

• Wind generates waves on a water’s surface.

• Waves occur within a broad range of geometric parameters
(heights/lengths).

• Waves are generated and grow due to many physical
mechanism, such as wave age, fetch, depth of the water body,
and wind velocity (in terms of u∗).

• Roughness of wavy water is primarily determined by the
steepest waves, rather than the longest.
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z0 Parameterizations for Sand, Snow, Water

Water

• The shortest waves are capillary waves, with
amplitudes/lengths O(1 mm).

• Water is typically considered aerodynamically smooth if
Re∗ � 1, so if we estimate Re∗ = z0u∗/ν ≈ 0.1, then
z0 = ms (ν/u∗), where ms ≈ 0.1.

• Water is fully rough when Re∗ � 1. In this case we use
z0 = αcu

2
∗/g, where αc is the Charnock “constant”, which

ranges from 0.01− 0.035 (typically 0.014− 0.019).
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z0 for Temperature and Moisture

• Boundary conditions for temperature and moisture at the
underlying surface are formulated based on notions of their
roughness lengths.

θ = θs at z0θ and q = qs at z0q

where z0θ and z0q are interpreted as the levels where θ and q
reach their surface values θs and qs, respectively.
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z0 for Temperature and Moisture

• The physical nature of transport mechanisms for momentum,
heat, and moisture differ significantly.

• e.g., pressure fluctuations are important to the transport of
momentum, bu do not directly affect heat and moisture.

• Thus, there is no physical basis to expect that z0 and z0θ, z0q
should be the same, or even close.

• There are experimental indications of similarity between heat
and moisture, so z0θ ∼ z0q.
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Parameterizing the Relationships between z0 and z0θ, z0q

• The number of roughness parameters needed is reduced by
parameterizing relationships between them.

• Commonly, z0/z0θ and z0/z0q are parameterized based on the
assumption that θ and q are logarithmic close to the surface.

θ(z) = θs +
θ∗
κ

ln
z

z0θ
and q(z) = qs +

q∗
κ

ln
z

z0q

thus,

δθ = θ(z0)−θs =
θ∗
κ

ln
z

z0θ
and δq = q(z0)−qs =

q∗
κ

ln
z

z0q

• Experimental data suggest that ln(z0/z0θ) and ln(z0/z0q)
may be functions of Re∗ = z0u∗/ν for rough surfaces.
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Parameterizing the Relationships between z0 and z0θ, z0q

• Rough

1

κ
ln
z0
z0θ

= 6.2 Re∗
1/4 − 5 and

1

κ
ln
z0
z0q

= 5.7 Re∗
1/4 − 5

• Smooth

1

κ
ln
z0
z0θ

= 13.6 Pr2/3− 12 and
1

κ
ln
z0
z0q

= 13.6 Sc2/3− 12

• Typical ASL values for Pr and Sc are 0.71 and 0.6,
respectively, for smooth surfaces.

• Thus, z0/z0θ = 0.5 and z0/z0q = 0.3 (i.e., the roughness
lengths for heat and moisture are typically larger than that for
momentum).
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