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Taylor-Proudman Theorem



Taylor-Proudman Theorem

• Consider the flow of a homogeneous flow that is in
geostrophic balance.

• This flow is only observed in laboratory experiments because
stratification effects cannot be avoided in nature.

• Imagine a tank with fluid that is steadily rotated at high
angular speed Ω.

• At the same time, a solid body is moved slowly across the
bottom of the tank.
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Taylor-Proudman Theorem

• The angular speed Ω is made large, and the solid body is
moved slowly, so that Coriolis � acceleration terms.

• Acceleration terms must be negligible for geostrophic flow.

• Away from the frictional effects of the boundaries, the balance
in this experiment is geostrophic in the horizontal and
hydrostatic in the vertical.

−2Ωv = −1

ρ

∂p

∂x
(1)

2Ωu = −1

ρ

∂p

∂y
(2)

0 = −1

ρ

∂p

∂z
− g (3)
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Taylor-Proudman Theorem

• Let’s now define the Ekman number as the ratio of viscous to
Coriolis forces (per unit volume):

E =
ρνU/L2

ρfU
=

ν

fL2

Based on the experimental setup, E is very small.
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Taylor-Proudman Theorem

• First take ∂/∂y of Eq. (1):

−2Ω
∂v

∂y
= −1

ρ

∂

∂y

∂p

∂x
= −1

ρ

∂

∂x

∂p

∂y

• Next take ∂/∂x of Eq. (2):

2Ω
∂u

∂x
= −1

ρ

∂

∂x

∂p

∂y

• Both equations are equal:

−2Ω
∂v

∂y
= 2Ω

∂u

∂x
→ 2Ω

(
∂u

∂x
+
∂v

∂y

)
= 0

• Recall that the incompressibility condition says
#»∇ ·

#»

U = 0.
Therefore, ∂w/∂z = 0.
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Taylor-Proudman Theorem

• Next, differentiate Eqs. (1) and (2) with respect to z:

−2Ω
∂v

∂z
= −1

ρ

∂

∂z

∂p

∂x
= −1

ρ

∂

∂x

∂p

∂z

2Ω
∂u

∂z
= −1

ρ

∂

∂z

∂p

∂y
= −1

ρ

∂

∂y

∂p

∂z

• Using Eq. (3):

−2Ω
∂v

∂z
=
∂g

∂x
= 0 2Ω

∂u

∂z
=
∂g

∂y
= 0

• Both equations are equal:

2Ω
∂v

∂z
= 2Ω

∂u

∂z
→ ∂u

∂z
=
∂v

∂z
= 0

• We already showed that ∂w/∂z = 0, so

∂
#»

U

∂z
= 0
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Taylor-Proudman Theorem

∂
#»

U

∂z
= 0

• This outcome shows that the velocity vector does not vary in
the direction of the

#»

Ω.

• In other words, steady, slow motions in a rotating, inviscid,
homogeneous fluid are two-dimensional.

• This is the Taylor-Proudman theorem.

• This theorem was derived by Proudman in 1916 and proved
experimentally by Taylor soon thereafter.
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Taylor-Proudman Theorem

Taylor’s Experiment:

• Dye was released at point A,
above the cylinder.

• If non-rotating, the dye
would pass over the cylinder.

• If rotating, the dye split at
point S, as if blocked by an
extension of the cylinder,
and flowed around this
imaginary column.

• This was called a Taylor
column.

via: Kundu et al. (2008)
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Taylor-Proudman Theorem

Taylor’s Experiment:

• Dye released at point B
moved with the cylinder.

• Conclusion: the flow outside
of the vertical extension of
the cylinder was the same as
if the cylinder extended
across the entire water
depth.

• Conclusion: a column of
water directly above the
cylinder moved with it.

via: Kundu et al. (2008)
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Taylor-Proudman Theorem

• For the case of a rotating steady, inviscid, homogeneous fluid,
Taylor’s experiments showed that bodies moving parallel or
perpendicular to the axis of rotation carry with them a Taylor
column of fluid.

• This Taylor column of fluid is oriented parallel to the axis of
rotation.

• This phenomenon is similar to horizontal solid-body blocking
in the real (stratified) world, such as flow encountering a
mountain.

12 / 21



Thermal Wind



Thermal Wind

• Recall that the geostrophic wind is:

# »

Vg =
1

ρf
k̂ × #»∇p

• We now define the thermal wind as:

#  »

VT =
# »

Vg , upper −
# »

Vg , lower

• The thermal wind is the vector difference between the
geostrophic wind at some upper level and lower level.

• The name is a misnomer because it is not a wind.
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Thermal Wind

• Why do we care about vertical changes in the geostrophic
wind?

• Vertical changes in
# »

Vg (and hence the thermal wind) are
associated with horizontal changes in temperature.

• Recall that the hydrostatic balance is given by:

∂p

∂z
= −ρg

we can apply the ideal gas law p = ρRT to get:

∂p

∂z
= − pg

RT
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Thermal Wind

• Consider an infinitesimally small difference in height δz
between two adjacent pressure levels that are separated by the
very small pressure difference δp:

δz = −RT
pg

δp

• Integrate to get the thickness between these two pressure
levels spaced arbitrarily far apart:

z2 − z1 = −R
g

∫ p2

p1

T

p
dp

• Thus, the thickness of a layer is proportional to the
temperature in the layer.
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Thermal Wind

• As an example:

• Another example with the same temperature field:

• In both cases, the geostrophic wind changes with height
because of horizontal temperature gradients.
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Thermal Wind

• The expression for the thermal wind is messy!

#  »

VT =
# »

Vg , upper−
# »

Vg , lower =
1

ρfupper
k̂× #»∇pupper−

1

fρupper
k̂× #»∇plower

• We can make life easier if we switch to isobaric coordinates by
using

1

ρ

#»∇zp =
#»∇pΦ

where Φ = gz. We get a much nicer expression:

#  »

VT =
1

f
× #»∇p (Φupper − Φlower)
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Thermal Wind

• Remember that the thermal wind is related to the vertical
shear of the geostrophic wind:

# »

Vg =
1

f
k̂ × #»∇pΦ take ∂/∂p

∂
# »

Vg
∂p

=
1

f
k̂ × #»∇p

∂Φ

∂p

∂p

∂z
= −ρg → [÷ by g and use gz = Φ]→ ∂p

∂Φ
= −ρ

∂Φ

∂p
= −1

ρ
→ [use ideal gas law]→ ∂Φ

∂p
= −RT

p

We’ve now related ∂Φ/∂p to T
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Thermal Wind

• Continuing:

∂
# »

Vg
∂p

=
1

f
k̂ × #»∇p

(
−RT

p

)
p=constant for isobaric level

∂
# »

Vg
∂p

= − R
fp
k̂ × #»∇pT

−∂
# »

Vg
∂p

=
R

fp
k̂ × #»∇pT

This is the thermal wind relation, although it is really an
equation for the vertical shear of the geostrophic wind.
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Thermal Wind

• Integrating the thermal wind relation will lead to the following
general relationship in the Northern Hempisphere:

#  »

VT = (positive values)k̂ × #»∇pT

Thus,
#  »

VT is parallel to mean isotherms in a layer, with cold air
to the left of

#  »

VT .

• This describes the Thermal Buys-Ballot Law: “with
#  »

VT to
your back, cold air is to your left.”
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