
Environmental Fluid Dynamics: Lecture 9

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering
University of Utah

Spring 2017

1 / 30



Overview

1 Atmospheric Dynamics: Basic Equations
Conservation of Momentum, continued
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Atmospheric Dynamics:

Conservation of Momentum,

continued



Conservation of Momentum: Non-Inertial Reference Frame

•
#»

F = m #»a is only valid for inertial (non-accelerating) reference
frames.

• Note: a reference frame is not the same as a coordinate
system because it depends on the motion of the observer.

• An inertial reference frame is stationary or it moves at a
constant velocity.

• A non-inertial reference frame changes velocity or rotates.
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Conservation of Momentum: Non-Inertial Reference Frame

• It is convenient to work with a reference frame that is fixed
with respect to Earth.

• Why? This is how we take measurements.

• The Earth rotates, so this reference frame is non-inertial.

• How do we reconcile the limitations of Newton’s 2nd Law?

• Fortunately, we can modify
#»

F = m #»a to allow for its
application to non-inertial reference frames through the
introduction of “apparent forces”.
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Conservation of Momentum: Apparent Forces

• There are two types of apparent forces that arise due to our
rotating reference frame: centrifugal and Coriolis.

• Centrifugal Force: the inertial force on an object that is
directed away from the axis of rotation that appears to act on
all bodies when viewed in a rotating frame of reference.

• Coriolis Force: the inertial force that appears to act on an
object in motion relative to a rotating frame of reference.
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Conservation of Momentum: Apparent Force (Centrifugal)

• Imagine some part of the universe that is not accelerating.

• We will put a reference frame (observer) there.

• It is an inertial reference frame, so
#»

F = m #»a is valid.

• Our observer sees a ball with mass m attached to a string
spinning in a circle of radius r at constant angular velocity ω.

• What is ball’s observed acceleration?

• Look at the ball at 2 infinitesimally close times t and t+ δt.
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Conservation of Momentum: Apparent Force (Centrifugal)

• ω = dθ/dt → thus, the angular displacement δθ of the ball in
time δt is: δθ = ωδt.

• The ball’s speed
∣∣∣ #»

V
∣∣∣ = ωr is constant since ω, r are constant.

• Thus, only the direction of the ball’s velocity changes.
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Conservation of Momentum: Apparent Force (Centrifugal)

• The vector change in
#»

V over a tiny time increment is ⊥ to
#»

V .∣∣∣ #»

V
∣∣∣ = constant→

√
u2 + v2 = constant→ u2 + v2 = constant

→ #»

V ·
#»

V = constant→ D

Dt
(

#»

V ·
#»

V ) =
D(constant)

Dt
= 0

→ #»

V ·
D

#»

V

Dt
+

#»

V ·
D

#»

V

Dt
= 2

#»

V ·
D

#»

V

Dt
= 0

Since
#»

V 6= 0 and D
#»
V

Dt 6= 0, must have
#»

V ⊥ D
#»
V

Dt
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Conservation of Momentum: Apparent Force (Centrifugal)

• So, the change in
#»

V (acceleration) is perpendicular to
#»

V

• Another way to think about it: there can be no change in
#»

V

in the direction of
#»

V since
∣∣∣ #»

V
∣∣∣ is constant. If there was such

an acceleration, then
∣∣∣ #»

V
∣∣∣ would increase/decrease, which is

impossible since it is constant. Thus, any change in
#»

V must
be in the radial direction.

10 / 30



Conservation of Momentum: Apparent Force (Centrifugal)

• We can see it graphically

For small δθ, δ
#»

V is perpendicular to
#»

V (
# »

V1 or
# »

V2) - meaning
it points toward the axis of rotation (−r̂ direction).
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Conservation of Momentum: Apparent Force (Centrifugal)

• In the previous example, consider a circle with radius
∣∣∣ #»

V
∣∣∣

∣∣∣δ #»

V
∣∣∣ =

∣∣∣ #»

V
∣∣∣ δθ = −ωrδθ → δ

#»

V = −ωrδθr̂

divide bt δt
δ

#»

V

δt
= −ωrδθ

δt
r̂

Take the limit as δt→ 0

D
#»

V

Dt
= −ωrDθ

Dt
r̂ = −ω2rr̂ = −ω2 #»r

Thus, the acceleration of the ball is inward toward to the axis
of rotation and is called the centripetal acceleration.
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Conservation of Momentum: Apparent Force (Centrifugal)

• The force causing this centripetal acceleration is the string
pulling inward on the ball:

• Can apply
#»

F = m #»a since we are in an inertial reference frame:

#»

F on ball due to string = −mω2 #»r
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Conservation of Momentum: Apparent Force (Centrifugal)

• Consider the same physical problem, but now our observer
(reference frame) is now fixed with respect to the ball.

• The ball appears stationary in this non-inertial reference
frame, so the apparent acceleration is 0.

• However, there is still a force on the ball due to the string!

• Applying Newton’s 2nd Law in this non-inertial reference
frame says

#»

F on ball due to string = 0 which is wrong since a force
does exist.
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Conservation of Momentum: Apparent Force (Centrifugal)

• To make Newton’s 2nd Law work in our non-inertial reference
frame we need to introduce an “apparent” force that cancels
with the force on the string.

• This apparent force is called the centrifugal force.

#»

F on ball due to string +
#»

F centrifugal = 0

thus,

#»

F centrifugal = − #»

F on ball due to string
#»

F centrifugal = mω2 #»r
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Conservation of Momentum: Apparent Force (Centrifugal)

• Instead of a ball, consider a reference frame that is fixed with
respect to Earth.

• Earth rotates with angular velocity
#»

Ω (Ω ≡
∣∣∣ #»

Ω
∣∣∣)

• Consider a mass m at rest on the surface of Earth,
#»

R is the
position vector of this mass with respect to the axis of
rotation.

• We arrive at the centrifugal force per unit mass:

#»

F centrifugal

m
= Ω2 #»

R
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Conservation of Momentum: Apparent Force (Centrifugal)

• We can now define the effective gravity, which is the sum of
the fundamental gravitational force and the apparent
centrifugal force:

#»g︸︷︷︸
gravity force

=
#»

g∗︸︷︷︸
gravitational force

+ Ω2 #»

R︸︷︷︸
centrifugal force
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Conservation of Momentum: Apparent Force (Coriolis)

• We considered a mass at rest on Earth’s surface.

• What happens if the mass is moving?

• We will need to introduce a second apparent force to enable
the use of Newton’s 2nd Law.

• This apparent force related to movement in the rotating
reference frame is named after French scientist
Gaspard-Gustave de Coriolis.
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Conservation of Momentum: Apparent Force (Coriolis)

• Let’s define velocity in terms of Earth

• u = velocity along a latitude circle
• u > 0 toward east (westerly wind)
• u < 0 toward west (easterly wind)

• v = velocity along a meridian
• v > 0 toward north (southerly wind)
• v < 0 toward south (northerly wind)

• w = vertical velocity
• w > 0 upward motion
• w < 0 downward motion
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Conservation of Momentum: Apparent Force (Coriolis)

• Imagine that we kick an initially resting mass m toward the
east.

• Since u > 0 here, the mass rotates faster than earth.

• The centrifugal force on the initially resting mass was:

Ω2 #»

R

• The centrifugal force on the mass after being kicked:(
Ω +

u

R

)2 #»

R

Note: velocity = angular velocity × radius, so angular velocity
= velocity/radius
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Conservation of Momentum: Apparent Force (Coriolis)

(
Ω +

u

R

)2 #»

R = Ω2 #»

R︸︷︷︸
centrifugal force

+ 2Ωu

#»

R

R︸ ︷︷ ︸
Coriolis force

+
u2

R2

#»

R︸ ︷︷ ︸
small, neglect

• Coriolis force in this scenario is directed radially outward from
the axis of rotation.

• Coriolis has no component in latitudinal directions and
projects into the meridional and vertical directions.
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Conservation of Momentum: Apparent Force (Coriolis)

• Associated with this Coriolis force are the following
acceleration components:

dv

dt

∣∣∣∣
Coriolis

= −2Ωu sinφ
dw

dt

∣∣∣∣
Coriolis

= 2Ωu cosφ
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Conservation of Momentum: Apparent Force (Coriolis)

dv

dt

∣∣∣∣
Coriolis

= −2Ωu sinφ
dw

dt

∣∣∣∣
Coriolis

= 2Ωu cosφ

• u > 0 (eastward): acceleration is toward the south and
upward (upward Coriolis force is weak compared to gravity
and slightly lessens the apparent weight of an object)

• u < 0 (westward): acceleration is toward the north and
downward (slightly increases the apparent weight of an object)

• In either case, the Coriolis force is perpendicular to the
direction of motion.

• In either case, we get a deflection to the left relative to the
direction of motion.
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Conservation of Momentum: Apparent Force (Coriolis)

• Imagine that we kick an initially resting mass m toward the
south (v < 0)

• From the conservation of angular momentum:

[u(t) + ΩR(t)]R(t) = C

• Initial conditions will help us solve C.
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Conservation of Momentum: Apparent Force (Coriolis)

• At the time of the kick (t = 0), u(0) = 0, and R = R(0):

[0 + ΩR(0)]R(0) = C → C = ΩR2(0)

Thus,
[u(t) + ΩR(t)]R(t) = ΩR2(0)
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Conservation of Momentum: Apparent Force (Coriolis)

• A short time after the kick (t = δt) the mass is at radius
R(0) + δR with a southward velocity (v < 0). u? (we will call
it δu since we expect that it will be small for small δt

{δu+ Ω [R(0) + δR]} [R(0) + δR] = ΩR2(0)

δuR(0)+���
��:

ΩR2(0)+ΩR(0)δR+δuδR︸ ︷︷ ︸
small

+ΩR(0)δR+Ω(δR)2︸ ︷︷ ︸
small

=���
��:

ΩR2(0)

So, we neglect δuδR and Ω(δR)2

δuR(0) + 2ΩR(0)δR = 0→ δu = −2ΩδR

• The mass develops a small westward (easterly) velocity
component.

• Let’s describe the acceleration.
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Conservation of Momentum: Apparent Force (Coriolis)

• δR = − sinφδy (negative since δy corresponds to a postive
δR (and reverse).

δu = −2ΩδR = −2Ω(− sinφδy) = 2Ω sinφδy

Divide by δt and take the limit as δt→ 0

du

dt

∣∣∣∣
Coriolis

= 2Ω sinφ
dy

dt
= 2Ωv sinφ
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Conservation of Momentum: Apparent Force (Coriolis)

• For our initial southward kick (v < 0), du/dt|Coriolis < 0

• u is initially 0 but becomes negative

• This means that we get a deflection toward the west (right,
relative to the direction of motion)

• We get the same formula and rightward deflection if the ball
is kicked north.
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Conservation of Momentum: Apparent Force (Coriolis)

• Imagine that we kick an initially resting mass m upward
(w > 0) or downward (w < 0).

• Conservation of angular momentum leads to:

du

dt
|Coriolis = −2Ωw cosφ

• This is derived following a similar approach as for the
horizontal components of momentum.
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Conservation of Momentum: Apparent Force (Coriolis)

• Putting the all together:

du

dt
|Coriolis = 2Ωv sinφ− 2Ωw cosφ

dv

dt
|Coriolis = −2Ωu sinφ

dw

dt
|Coriolis = 2Ωu cosφ

• These terms must appear as apparent forces per unit mass to
allow the application of

#»

F = m #»a .
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