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Overview

1 Atmospheric Dynamics: Basic Equations
Overview
Review: Lagrangian vs. Eulerian
Conservation of Mass
Conservation of Momentum
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Basic Equations of Fluid Dynamics

• We are interested in the basic equations of fluids dynamics
applied to the atmosphere (i.e., a rotating coordinate system)

• These include
• Conservation of Mass
• Conservation of Momentum
• Conservation of Energy (mechanical and total)

• In general, we would like to determine the transport of mass,
momentum, energy, or scalars

• We will present these in differential, Eulerian form
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Review:

Lagrangian vs. Eulerian



Review: Lagrangian vs. Eulerian

Lagrangian

• Description of how quantities change with time for an air
parcel (following air parcel motion).

• x(t), y(t), z(t) are Cartesian coordinates of the position of the
parcel and are dependent variables.

• t is an independent variable.

• #»r (t) ≡ x(t)̂i+ y(t)ĵ + z(t)k̂ is the parcel position vector.

• D()
DT is the rate of change of ().

• D
DT is the (total, substantial, particle, individual, Lagrangian,
material) operator.
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Review: Lagrangian vs. Eulerian

Lagrangian

• For velocity:

#»u ≡ D #»r

Dt
=
Dx

Dt
î+

Dy

Dt
ĵ +

Dz

Dt
k̂ = uî+ vĵ + wk̂

• The acceleration is:
#»a ≡ D #»u

Dt

• Thus,
#»

F = m #»a = m
D #»u

Dt
= m

D2 #»r

Dt2
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Review: Lagrangian vs. Eulerian

Eulerian

• Description of how quantities change with time at a fixed
point in space (not following parcel).

• T (x, y, z, t) is temperature at a point (x, y, z) in space at
time t.

• Here, x, y, z, t are independent variables.

• ∂T
∂t is the local derivative of T - the time rate of change of T

at a fixed point.

• Generally, D/Dt 6= ∂/∂t, but they are related
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Review: Lagrangian vs. Eulerian

Relationship Between Lagrangian and Eulerian

• At time t0, a parcel of air is at x0, y0, z0 with temperature:
• Lagrangian: T (t0)
• Eulerian: T (x0, y0, z0, t0)

• Let’s consider the parcel at time t = t0 + δt.
• Lagrangian: T = T (t0 + δt)
• Eulerian: T = T (x0 + δx, y0 + δy, z0 + δz, t0 + δt)

• Time change in the Lagrangian viewpoint is:

DT

Dt
= lim

δt→0

T (t0 + δt)− T (t0)

δt

• Expand the right-hand side using the Eulerian viewpoint:

DT

Dt
= lim

δt→0

T (x0 + δx, y0 + δy, z0 + δz, t0 + δt)− T (x0, y0, z0, t0)

δt

8 / 51



Review: Lagrangian vs. Eulerian

Relationship Between Lagrangian and Eulerian

• Now we apply the Taylor expansion and neglect higher-order
terms.

DT

Dt
= lim

δt→0

T0 + ∂T
∂x δx+ ∂T

∂y δy + ∂T
∂z δz + ∂T

∂t δt− T0
δt

= lim
δt→0

(
∂T

∂x

δx

δt
+
∂T

∂y

δy

δt
+
∂T

∂z

δz

δt
+
∂T

∂t

)
=
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

where
T0 = T (x0, y0, z0, t0)

and

u = lim
δt→0

δx

δt
, v = lim

δt→0

δy

δt
, w = lim

δt→0

δz

δt
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Review: Lagrangian vs. Eulerian

Relationship Between Lagrangian and Eulerian

• So, we have:

DT

Dt︸︷︷︸
total deriv

=
∂T

∂t︸︷︷︸
local deriv

+u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z︸ ︷︷ ︸
advection terms

or
DT

Dt
=
∂T

∂t
+ #»u ·

#»∇T

• In general,
D()

Dt
=
∂()

∂t
+ #»u ·

#»∇()
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Atmospheric Dynamics:

Conservation of Mass



Conservation of Mass

• Consider a stationary volume of fluid through which mass is
flowing - conceptually:
{mass accumulation rate} = {mass in rate} - {mass out rate}

From Holton (2004)
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Conservation of Mass

• The rate of mass inflow through RHS

ρu− ∂(ρu)

∂x

δx

2

• The rate of mass outflow through LHS

ρu+
∂(ρu)

∂x

δx

2

• Note: area of each face is δyδz, so the net flow into the
volume due to u is[

ρu− ∂(ρu)

∂x

δx

2

]
δyδz −

[
ρu+

∂(ρu)

∂x

δx

2

]
δyδz

= −∂(ρu)

∂x
δxδyδz
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Conservation of Mass

• Similar expressions hold for the net mass flow into the volume
due to v and w, so that

δxδyδz
∂ρ

∂t
= −

[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
δxδyδz

∂ρ

∂t
= −

[
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

]
∂ρ

∂t
= −∇ · (ρ

#»

U )

Thus
∂ρ

∂t
+∇ · (ρ

#»

U ) = 0

the mass divergence form of the continuity equation
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Conservation of Mass

∂ρ

∂t
+∇ · (ρ

#»

U ) = 0

• We can rewrite by using the following relationships

∇ · (ρ
#»

U ) ≡ ρ∇ ·
#»

U +
#»

U ·∇ρ
D

Dt
≡ ∂

∂t
+

#»

U ·∇

to arrive at

∂ρ

∂t
+ ρ∇ ·

#»

U +
#»

U ·∇ρ = 0

1

ρ

Dρ

Dt
+∇ ·

#»

U = 0

the velocity divergence form of the continuity equation
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Conservation of Mass

mass divergence form of the continuity equation

• local rate of change of density is balanced by mass divergence

∂ρ

∂t
+∇ · (ρ

#»

U ) = 0

velocity divergence form of the continuity equation

• the fractional rate of increase of density following the motion
of an air parcel is balanced by the velocity divergence

1

ρ

Dρ

Dt
+∇ ·

#»

U = 0
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Conservation of Mass: Incompressible Flow

• For many cases, the atmosphere may be considered
incompressible

• incompressible flow: the density of a fluid element does not
change during its motion (note: this does not imply that
density is constant everywhere)

Dρ

Dt
= 0

thus, the continuity equation becomes

∇ ·
#»

U = 0
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Conservation of Mass: Boussinesq Approximation

• We can extend the assumption of an incompressible flow and
take the Boussinesq approximation

• Separate the density into 2 parts: a base state ρ̄(z) and
perturbation ρ′

• We will apply this after deriving an expression for the
momentum balance equation
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Atmospheric Dynamics:

Conservation of Momentum



Conservation of Momentum

• Because the Earth’s atmosphere has mass, we can apply
Newton’s 2nd Law

#»

F = m #»a

where
#»

F is the sum of all forces acting on an object, m is the
mass of the object, and #»a is the acceleration of the object

• In classical mechanics, the object is usually some rigid solid
body (e.g., ball, top, pendulum)

• In continuum mechanics, the object is usually some
infinitesimal parcel of fluid or an elastic solid

• Since atmospheric dynamics is a branch of continuum
mechanics, we will apply Newton’s 2nd Law to a small volume
element in the atmosphere
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Conservation of Momentum: Coordinate System

• We will apply Newton’s 2nd Law to a rotating frame of
reference. Why? Rotational effects are important for
large-scale dynamics in the atmosphere.

• We choose a coordinate system that is fixed to the Earth,
which is rotating. Why? That is where we make observations.
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Conservation of Momentum: Forces

• There are two categories of forces that we must consider:
fundamental and apparent.

• Fundamental Forces: forces directly “felt” by the fluid.

• Apparent Forces: imaginary forces that result from
acceleration of our coordinate system.
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Conservation of Momentum: In Words

• The conservation of momentum may be expressed in words as:{
rate of

momentum
accumulation

}
=

{
rate of

momentum
in

}
−

{
rate of

momentum
out

}

+

{
sum of

fundamental
forces

}
+

{
sum of

apparent
forces

}
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Conservation of Momentum: Fundamental Forces

• There are two types of fundamental forces in fluids: body and
surface.

• Body Forces: the force on an object is proportional to the
mass of the object. This is often referred to as “action at a
distance” (e.g., gravity, electromagnetic).

• Surface Forces: the force on an object is proportional to the
surface area of the object. These forces are due to contact of
the object with its surroundings, such as the force on the
surface of a fluid element by an outside fluid (e.g., pressure,
friction).
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Conservation of Momentum: Body Force (Gravity)

• Let’s first derive an expression for the gravitational force,
starting with Newton’s law of gravitation:

# »

Fg = −GMm

r2

#»r

r

which applies to two objects with masses M and m, where #»r
is the directed distance between their centers of mass,
r = | #»r |, and G = 6.67× 10−11N m 2kg−2 is the universal
gravitational constant.
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Conservation of Momentum: Body Force (Gravity)

• Let #»r point from a big object of mass M to a little object of
mass m. Then

# »

Fg is the gravitational force on m due to M .

• Let r̂ ≡ #»r /r, so that

# »

Fg = −GMm

r2
r̂,

• Thus, | # »

Fg| is inversely proportional to the square of the

distance between the the two masses (if r ↑ then | #»F g| ↓).
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Conservation of Momentum: Body Force (Gravity)

• Let M be the mass of Earth and m be the mass of a small
parcel of air. We can then write the gravitational force per
unit mass of air as:

# »

Fg
m︸︷︷︸
#»

g∗

= −GM
r2

r̂

• Consider a parcel of air with mass m at a height z above
Earth’s surface in the troposphere
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Conservation of Momentum: Body Force (Gravity)

• a = 6370 km and z < 15 km

• r = a+ z ≈ a, thus r2 ≈ a2

•
#»

g∗ ≈ −GM
a2
r̂ (in troposphere)

• M = 4
3πa

3ρe, where
ρe = 5520 kg s−2 is the density of
Earth

• Thus,
∣∣∣ #»

g∗
∣∣∣ ≈ 9.8 m s−2

• This is gravitational acceleration
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Conservation of Momentum: Surface Force (Pressure)

• Consider an infinitesimally small box of air with sides in the x,
y, and z directions of length δx, δy, and δz.

• We want to find the net pressure force on the box (note:
pressure is a compressive force that acts perpendicular to the
surfaces of the box)
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Conservation of Momentum: Surface Force (Pressure)

• Consider the x-component of the pressure force, (only include
the two faces of the box perpendicular to the x-axis).

• Point 0 is at the center of the box, located at x0, y0, z0.

• Pressure at center of box is p0

• FAx (Fbx) is the pressure force on face A (B) in x-direction.

• XA = x0 + δx/2, XB = x0 − δx/2
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Conservation of Momentum: Surface Force (Pressure)

• Using Taylor series, the pressure on face A is:

pA = p0 +
∂p

∂x

∣∣∣∣
x0,y0,z0

(xA − x0) + higher order terms (h.o.t.)

= p0 +
∂p

∂x

(
x0 +

δx

2
− x0

)
+����:

very small
h.o.t.

= p0 +
∂p

∂x

δx

2
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Conservation of Momentum: Surface Force (Pressure)

• Pressure force (pressure × area) on face A is:

FAx = −pAδyδz

= −
(
p0 +

∂p

∂x

δx

2

)
δyδz

• Note: the minus sign appears because the force exerted by the
outside fluid on the inside fluid across face A is in the minus
x-direction.
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Conservation of Momentum: Surface Force (Pressure)

• Using Taylor series, the pressure on face B is:

pB = p0 +
∂p

∂x

∣∣∣∣
x0,y0,z0

(xB − x0) + h.o.t.

= p0 +
∂p

∂x

(
x0 −

δx

2
− x0

)
+����:

very small
h.o.t.

= p0 −
∂p

∂x

δx

2
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Conservation of Momentum: Surface Force (Pressure)

• Pressure force (pressure*area) on face B is:

FBx = pBδyδz

=

(
p0 −

∂p

∂x

δx

2

)
δyδz
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Conservation of Momentum: Surface Force (Pressure)

• The net x-component pressure force on the box is:

Fx ≡ FAx + FBx

= −
(
p0 +

∂p

∂x

δx

2

)
δyδz +

(
p0 −

∂p

∂x

δx

2

)
δyδz

= −∂p
∂x
δxδyδz

• Thus, the net pressure on the box is proportional to the
pressure gradient - the pressure gradient force (PGF).
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Conservation of Momentum: Surface Force (Pressure)

• If the mass of the box is m = ρδV = ρδxδyδz, then the
x-component PGF per unit mass is:

Fx
m

= −

∂p

∂x
δxδyδz

ρδxδyδz
= −1

ρ

∂p

∂x

• Similarly,

Fy
m

= −1

ρ

∂p

∂y
and

Fz
m

= −1

ρ

∂p

∂z

• In vector form:
# »

Fp
m

= −1

ρ

#»∇p

36 / 51



Conservation of Momentum: Surface Force (Pressure)

# »

Fp
m

= −1

ρ

#»∇p

• Note: The PGF is proportional to the gradient of pressure and
not the pressure itself.

• The magnitude of the PGF is large where the magnitude of
#»∇p is large (tight isobars).

• The leading minus sign indicates that the PGF acts in the
opposite direction of

#»∇p (from high to low pressure).
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Conservation of Momentum: Surface Force (Friction)

• Now we consider the surface force due to molecular friction -
the viscous force.

• To understand this force, consider fluid at rest between two
infinite parallel plates. At time t = 0 the top plate begins
moving at a speed of U0 in the x direction:

• The “no-slip” condition means that molecular friction causes
fluid to stick to solid objects or boundaries.
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Conservation of Momentum: Surface Force (Friction)

• Fluid at the lower plate does not moves because it is sticking
to the non-moving boundary.

• Fluid at the top plate moves at speed U0 because it is sticking
to the moving boundary.
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Conservation of Momentum: Surface Force (Friction)

• Eventually we get a steady-state, where there is no change in
velocity with time at any point.

• For this experiment, steady-state looks like:

• We find that u = U0
z
h , where h is the distance between the

two plates.

• From this, we see that ∂u/∂z = U0/h.

• Thus, we get a linear profile.
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Conservation of Momentum: Surface Force (Friction)

• Why do we get a linear profile of velocity when this
experiment reaches steady-state?

• Consider the x-component of the viscous force, per unit area,
exerted on a horizontal area at height z by the overlying fluid:

τzx = µ
∂u

∂z

where the subscripts denote that we are considering the force
in the x direction at height z, and µ is the dynamic viscosity.

• τzx is the shearing stress and represents one component of the
stress tensor.

• This shearing stress is proportional to the vertical gradient of
the x-component of velocity.
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Conservation of Momentum: Surface Force (Friction)

• Consider the x-component force balance on a parcel of fluid
within the flow:

• Top face: ∂u/∂z > 0→ τzx > 0→ the x-component force
exerted on the bottom face by the overlying fluid is positive.

• The underlying fluid exerts an equal and opposite force on the
bottom face via Newton’s 3rd Law (action/reaction).

• This means that the slow fluid underlying the bottom face
tries to slow down the faster fluid above it in the parcel.
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Conservation of Momentum: Surface Force (Friction)

• Because u varies linearly with height, ∂u/∂z is spatially
constant.

• This means that τzx is constant → the forces on the top and
bottom faces are equal and opposite.

• The result is that there is no net horizontal force, and thus no
horizontal acceleration.

• This implies steady-state for this experiment.
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Conservation of Momentum: Surface Force (Friction)

• Let’s move beyond the simple plate experiment and consider a
unidirectional shear flow in which u(z) is not linear.

• In this case, τzx is not spatially constant → no steady-state.
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Conservation of Momentum: Surface Force (Friction)

• Consider an infinitesimally small box of fluid with sides in the
x, y, and z directions of length δx, δy, and δz.

• τzx0 is the x-component of shearing stress at the center of the
box.
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Conservation of Momentum: Surface Force (Friction)

• The x-component of shearing stress at the top of the box is:

τzx0 +
∂τzx
∂z

δz

2

• The x-component viscous force on the top face exerted by the
overlying fluid is: (

τzx0 +
∂τzx
∂z

δz

2

)
δxδy
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Conservation of Momentum: Surface Force (Friction)

• The x-component of shearing stress at the bottom of the box
is:

τzx0 −
∂τzx
∂z

δz

2
• The x-component viscous force on the bottom face exerted by

the underlying fluid is:

−
(
τzx0 −

∂τzx
∂z

δz

2

)
δxδy
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Conservation of Momentum: Surface Force (Friction)

• The total x-component viscous force on the fluid box is:

# »

Ff =

(
τzx0 +

∂τzx
∂z

δz

2

)
δxδy −

(
τzx0 −

∂τzx
∂z

δz

2

)
δxδy

=
∂τzx
∂z

δxδyδz

The total x-component viscous force per unit mass is:

Fx =

∂τzx

∂z
δxδyδz

ρδxδyδz
=

1

ρ

∂τzx
∂z

=
1

ρ

∂

∂z

(
µ
∂u

∂z

)
assume µ=contant

=
µ

ρ

∂2u

∂z2

= ν
∂2u

∂z2

where ν = µ/ρ is kinematic viscosity.
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Conservation of Momentum: Surface Force (Friction)

• In reality, u will vary in the x, y, and z directions →
u = u(x, y, z). Thus,

Fx
m

= ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= ν

#»∇2u

In general, there are also v = v(x, y, z) and w = w(x, y, z)
components to consider:

Fy
m

= ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
= ν

#»∇2v

Fz
m

= ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
= ν

#»∇2w

or in vector form:
# »

Ff
m

= ν

(
∂2 #»u

∂x2
+
∂2 #»u

∂y2
+
∂2 #»u

∂z2

)
= ν

#»∇2 #»u
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Conservation of Momentum: Surface Force (Friction)

• The physical basis for viscous force in the atmosphere is the
random migration of air molecules.

• Consider a large-scale flow where u increases with height.

• Downward-moving molecules have larger u than
upward-moving molecules.

• Thus, faster momentum is brought down and slower
momentum is moved upward (mixing) → bigger ∂u/∂z means
greater momentum transport by frictional effects.

• Is the net effect dominated by downward or upward
momentum transport? This is determined by the vertical
derivative (∂/∂z) of the shear (∂u/∂z).
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Conservation of Momentum: Surface Force (Friction)

• The origin of friction in liquids is much more complicated.

• There is some attraction between molecules, but not much in
the way of migration.

• Notably, we get the same mathematical description of the
viscous force as for gases (

# »

Ff = ν
#»∇2 #»u ) - just with a different

value for ν.

• However, for T ↑ we get that νwater ↓ and νair ↑.
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