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Atmospheric Thermodynamics



Atmospheric Thermodynamics: Hypsometric Equation

• Recall from last class that the geopotential thickness between
two pressure levels is

Z2 − Z1 =
Rd
g0

∫ p1

p2

Tv
dp

p

• If we assume the atmosphere is isothermal and neglect the
virtual temperature correction

Z2 − Z1 = H ln

(
p1
p2

)
where

H ≡ RT

g0
= 29.3T

is the scale height
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Atmospheric Thermodynamics: Hypsometric Equation

• Scale height

The height within which some parameter, such as pres-
sure or density, decreases by a factor 1/e in an isothermal
atmosphere

• We can see this by rearranging the thickness equation

Z2 − Z1 = H ln

(
p1
p2

)
⇒ p2 = p1 exp

[
−(Z2 − Z1)

H

]
• So, H may be thought of as a measure of the effective

“thickness” of an atmospheric layer
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Atmospheric Thermodynamics: Hypsometric Equation
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Atmospheric Thermodynamics: Hypsometric Equation

• As we discussed earlier, temperature usually will vary with
height

• It is not always appropriate to neglect the virtual temperature
correction

• A more general approach is to integrate Tv w.r.t. presure as

T̄v ≡
∫ p1
p2 Tvd(ln p)∫ p1
p2 d(ln p)

=

∫ p1
p2 Tv

dp

p

ln

(
p1

p2

)

• Which leads to the hypsometric equation

Z2 − Z1 = H̄ ln

(
p1
p2

)
=
RdT̄v
g0

ln

(
p1
p2

)
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Atmospheric Thermodynamics: Reducing P to SLP

• In areas with mountainous terrain, changes in surface pressure
between one site and another are largely caused by differences
in elevation

• We reduce surface pressure to a common level in order to
separate the portion of the pressure field caused by weather

• For a layer between the Earth’s surface and sea level:

Zg = H ln

(
p0
pg

)
• We can use this to solve for sea-level pressure (SLP)

p0 = pg exp

(
Zg

H

)
= pg exp

(
g0Zg

RdT v

)
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Atmospheric Thermodynamics: Reducing P to SLP

pg exp

(
g0Zg

RdT v

)

• if Zg/H � 1, then exp
(
Zg/H

)
∼ 1 + Zg/H and we can

rewrite as

p0 − pg ' pg
Zg

H
= pg

(
g0Zg

RdT v

)
• If we use representative values of pg ' 1000 hPa and
H ' 8000 m, then the pressure correction is

p0 − pg ∼
Zg
8

This means that pressure decreases by 1 hPa every 8 m of
ascent (within first couple hundred meters above/below SLP)
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Atmospheric Thermodynamics: 1st Law of Thermo

• Imagine a closed system of unit mass

• Thermal energy Q (J) is added to the system via conduction
and/or radiation

• In response, the system may do some amount of external work
W

• The excess energy given to body over the external work done
by the body is given by Q−W
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Atmospheric Thermodynamics: 1st Law of Thermo

• It follows from conservation of energy that the internal energy
of the system must increase by Q−W , or

dQ− dW = dU

where
• dQ→ differential heat added to system
• dW → differential work done by system
• dU → differential increase in internal energy

• This describes4 the First Law of Thermodynamics

• The change in internal energy only depends on the initial and
final states of the system - and not the transfer mechanism
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Atmospheric Thermodynamics: 1st Law of Thermo

Joule’s Law

The internal energy of a fixed mass of an ideal gas depends
only on its temperature (not pressure or volume)

• Found that if a gas expands without doing external work and
without taking/giving heat, then the temperature does not
change

• This is only possible if molecules of an ideal gas do not exert
forces on each other
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Atmospheric Thermodynamics: 1st Law of Thermo

• Imagine heat dQ is given to a unit mass, which causes the
temperature to increase from T to T + dT

• dQ/dT → specific heat

• If volume is held constant, then

cv =

(
dQ

dT

)
v const

• Also if volume is constant, dW = 0, which means dQ = dU :

cv =

(
dU

dT

)
v const

• Invoking Joule’s Law means U only depends on T , so

cv =

(
dU

dT

)
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Atmospheric Thermodynamics: 1st Law of Thermo

• The First Law of Thermodynamics for an ideal gas

dQ = cvdT + pdα

where α = 1/ρ is specific volume

• Adding heat will either change T or α

• The change in U is given by

dU =

∫ T2

T1

cvdT
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Atmospheric Thermodynamics: 1st Law of Thermo

• We can also define a specific heat at constant pressure

cp =

(
dQ

dT

)
p const

• Here, heat is added, temperature rises, and the system
expands - but the pressure remains constant

• Some amount of the heat added to the system is expended to
expand against constant pressure of environment

• Thus, more heat must be added to raise a material’s
temperature by a given amount than if volume had been kept
constant
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Atmospheric Thermodynamics: 1st Law of Thermo

dQ = cvdT + pdα

• Using product rule, d(pα) = pdα+ αdp, so

dQ = cvdT + d(pα)− αdp

• Recall ideal gas law
pα = RT

so

d(pα) = d(RT ) = RdT +���:
0

TdR = RdT

• We can rewrite as

dQ = cvdT +RdT − αdp = (cv +R)dT − αdp
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Atmospheric Thermodynamics: 1st Law of Thermo

dQ = (cv +R)dT − αdp

• At constant pressure, αdp = 0, so

dQ = (cv +R)dT(
dQ

dT

)
p const

= cv +R

cp = cv +R
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Atmospheric Thermodynamics: 1st Law of Thermo

• For dry air, cv = 717 J K−1 kg−1 and cp = 1004 J K−1 kg−1

• Note that
1004 J K−1 kg−1 − 717 J K−1 kg−1 = 287 J K−1 kg−1,
which is the gas constant for dry air Rd

• Using cp = cv +R and dQ = (cv +R)dT , we can rewrite the
First Law of Thermodynamics as

dQ = cpdT − αdp

• So, in terms of specific heat, we have

dQ = cvdT + pdα

dQ = cpdT − αdp
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Atmospheric Thermodynamics: 1st Law of Thermo

• Imagine heat is added to a material at constant p such that α
increases

• The work done my a unit mass of the material is p(α2 − α1)

• Thus, the finite heat added to a unit mass at constant
pressure is

∆Q = (U2 − U1) + p(α2 − α1) = (u2 + pα2)− (u1 + pα1)

• We can rewrite this as

∆Q = H2 −H1

where H ≡ U + pα is the enthalpy
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Atmospheric Thermodynamics: 1st Law of Thermo

H ≡ U + pα

• Integrating our expression for enthalpy gives

dH = dU + d(pα)

• Recall that cv = (dU/dT ) and dQ = cvdT + d(pα)− αdp, so
dU = cvdT = dQ− d(pα) + αdp

• We can combine

dH = dU + d(pα)

= dQ− d(pα) + αdp+ d(pα)

= dQ+ αdp

which gives another form of the First Law of Thermodynamics

dQ = dH − αdp
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Atmospheric Thermodynamics: 1st Law of Thermo

dQ = dH − αdp

• Recall, dQ = cpdT − αdp
• Comparing with the enthalpy version above, we see that

dH = cpdT

or if integrated
H = cpT

where h = 0 when T = 0

• Thus, H is the heat required to raise the temperature of a
material from 0 K to T K at constant pressure
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Atmospheric Thermodynamics: 1st Law of Thermo

• Imagine some slice of air is at rest and in hydrostatic balance

• If that slice is heated (radiative transfer), then the weight of
the overlying air remains constant

• i.e., the heating is at constant pressure

• The increased energy added to the air appears in the form of
an increase in enthalpy

• In atmospheric science, enthalpy is referred to as sensible heat
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Atmospheric Thermodynamics: 1st Law of Thermo

• In the case of heating at constant pressure (αdp = 0), we have

dQ = dH = cpdT

• This slice of air expands as it is heated, which results in work
by pushing up the overlying air against gravity

• Recall dQ = cvdT + pdα, so for the energy given to the air,
cvdT is the increase in internal energy and pdα = RdT is the
work done on the overlying air

23 / 43



Atmospheric Thermodynamics: Adiabatic Processes

Adiabatic Process

When a material undergoes a physical state change (pressure,
volume, temperature) without any heat exchange

• So, dQ = 0 for an adiabatic process

• Thus, for dQ = cvdT + pdα, we have

−cvdT = pdα

• This means that expansion (compression) requires dT < 0
(dT > 0) or reduction (increase) in internal energy
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Atmospheric Thermodynamics: Adiabatic Processes

From Wallace and Hobbs
(2006)

• Consider initial state at point A

• An isothermal change is AB

• A similar change in volume under
adiabatic conditions is AC (called
an adiabat)
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Atmospheric Thermodynamics: Adiabatic Processes

From Wallace and Hobbs
(2006)

• Why is AC steeper?

• Recall dQ = 0, and we have
cvdT = −pdα

• For compression, pdα < 0, so
dT > 0

• Conversely, for AB the temperature
remains constant

• Thus, TC > TB and pC > pB
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Atmospheric Thermodynamics: Adiabatic Processes

• Mixing is often viewed as a result the random motions of
individual molecules for many fluid dynamics applications

• However, molecular mixing in the atmosphere is only relevant
in the lowest cm or at > 105 km

• In between, vertical mixing is generally is accomplished by
larger scale “air parcels”

• We will use parcel theory to try and better understand vertical
mixing in the atmosphere
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Atmospheric Thermodynamics: Adiabatic Processes

Assumptions for an air parcel of infinitesimal dimension

• Thermally insulated - temperature changes adiabatically as it
moves vertically

• Thus, the parcel pressure remains equal to the environmental
pressure - which is assumed to be in hydrostatic balance

• Moves slowly enough such that macroscopic kinetic energy is
a negligible fraction of its total energy

So, if we lift an air parcel adiabatically (no transfer of energy
across its surface) and bring it back to its original location then
the pressure of the parcel will be the same - a reversible process

In the real world these conditions are likely violated due to
radiation and condensation
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Atmospheric Thermodynamics: Adiabatic Processes

Dry Adiabatic Lapse Rate

The rate of change of temperature with height of a parcel of
dry air that satisfies the assumptions of adiabatic mixing

• Recall dQ = cpdT − αdp
• Since dQ = 0, we get cpdT = αdp

• This leads to dT/dp = α/cp = 1/(ρcp)

• Making use of the hydrostatic equation dp = −ρgdz

− dT

ρgdz
=

1

ρcp

• Rearranging yields
dT

dz
= − g

cp
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Atmospheric Thermodynamics: Adiabatic Processes

dT

dz
= − g

cp

• Let’s look at units of g/cp

[m s−2]

[J K−1 kg−1]
=

[m s−2]

[kg m2 s−2 K−1 kg−1]
=

[K]

[m]

• It is the dry adiabatic lapse rate Γd

dT

dz
= −Γd
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Atmospheric Thermodynamics: Adiabatic Processes

dT

dz
= −Γd

• In the lowest 10 km, g does not change much (see last
lecture) and so Γd is approximately constant

• At sea level

Γd =
9.81 m s−2

1004 J K−1 kg−1
= 0.0098 K m−1 = 9.8 K km−1

• Again, this is based on assuming adiabatic lifting/lowering -
not something that really happens the atmosphere exactly

• Measurements indicate true lapse rate in the troposphere as

Γ =
∂T

∂z
≈ 6− 7 K km−1
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Atmospheric Thermodynamics: Adiabatic Processes

Potential Temperature - θ

The temperature that the parcel of air would have if it were
expanded or compressed adiabatically from its existing pressure
and temperature to a standard pressure p0 (generally taken as
1000 hPa)

• A change in pressure results in a temperature change in an
adiabatic process

• We must consider this when comparing displaced fluid
elements with their surroundings
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Atmospheric Thermodynamics: Adiabatic Processes

• We can derive an expression for potential temperature using
the First Law of Thermodynamics

• Recall for an adiabatic process, dQ = 0, so cpdT − αdp = 0

• Using the ideal gas law, α = RT/p, which leads to

cpdT −
RT

p
dp = 0

cp
R

dT

T
− dp

p
= 0

• Then we integrate from p0 (where T = θ) upward

cp
R

∫ T

θ

dT

T
=

∫ p

p0

dp

p
⇒ cp

R
ln

(
T

θ

)
= ln

(
p

p0

)
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Atmospheric Thermodynamics: Adiabatic Processes

cp
R

ln

(
T

θ

)
= ln

(
p

p0

)

• Take the antilog of both sides(
T

θ

)cp/R
=

p

p0

• Rearrange to get potential temperature

θ = T

(
p0
p

)R/cp
This is called Poisson’s equation
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Atmospheric Thermodynamics: Adiabatic Processes

θ = T

(
p0
p

)R/cp
• Generally, R ≈ Rd = 287 J K−1 kg−1 and
cp = 1004 J K−1 kg−1 so that R/cp = κ ' 0.286

• p0 is usually taken as 1000 hPa - reference pressire

• Potential temperature is a conserved quantity because it
remains constant for an air parcel as it moves adiabatically

• The atmosphere is approximately adiabatic, so potential
temperature is very useful parameter since it remains basically
constant - like density in an incompressible fluid
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Atmospheric Thermodynamics: Adiabatic Processes

• The potential temperature removes the effect of dry adiabatic
temperature changes

• It is valid for
• ideal gas
• dry
• isentropic
• constant specific heats
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Atmospheric Thermodynamics: Adiabatic Processes

• We can show that:

∂θ

∂z
' ∂T

∂z
+ Γ

∆θ ' ∆T + Γ∆z

θ − θ0 = T − T0 + Γd(z − z0)
θ(z) = T (z) + Γdz (if z0 = 0)
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Atmospheric Thermodynamics: Adiabatic Processes

θ = T

(
p0
p

)κ
∂

∂z
(ln θ = lnT + κ ln p0 − κ ln p)

1

θ

∂θ

∂z
=

1

T

∂T

∂z
− κ

p

∂p

∂z
we treated κ ln p0 as constant

Using hydrostatic approximation and ideal gas law

−κ
p

∂p

∂z
=
κ

p
ρg =

κρg

ρRT
=

κg

RT
=

Rg

cpRT
=

1

T

g

cp
=

1

T
Γd

∂θ

∂z
=
θ

T

(
∂T

∂z
+ Γd

)
∂θ

∂z
'
(
∂T

∂z
+ Γd

)
(assume θ/T ≈ 1)
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Atmospheric Thermodynamics: Adiabatic Processes

• Visualize these relationships using skew T-ln p diagram
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Atmospheric Thermodynamics: Adiabatic Processes

• Isobars
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Atmospheric Thermodynamics: Adiabatic Processes

• Isotherms
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Atmospheric Thermodynamics: Adiabatic Processes

• Dry Adiabats
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Atmospheric Thermodynamics: Adiabatic Processes

• Today’s atmospheric sounding
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