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Energy Balance over Salt Flats

Utah's West Desert
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Energy Balance over Salt Flats: Total Balance

Ry=H+LE+G+n
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Energy Balance over Salt Flats: Residual Components

RN=H+LE+G+
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Higgins et al. (2012)

n(t) = S@t) + At) + W(t) + Or(t)
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Energy Balance over Salt Flats: Residual Components

RN=H+LE+G+
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Higgins et al. (2012)

e 59% energy storage in the soil layer
e 30% underestimates of the soil heat flux
e 1% percent advection (not statistically significant)
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Near-Surface

Thermal Radiation



Near-Surface Thermal Radiation

Radiation

Transfer of energy through rapid oscillation of electromagnetic
fields

Ry=H+ H;+Hg+ AHg

Ry = Rs(1) + Rs(1) + Ro(}) + Ri(T)

See Chapter 3 in Arya



Electromagnetic Spectrum
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Range of interest for atmospheric radiative transfer
solar ~0.1-4 um (short wave), terrestrial ~3-100 um (long wave)

Absorption of Radiation
e Orbital changes in electrons
e Molecular vibration changes @

e Molecular rotation changes
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Radiation Characteristics
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Complexity of radiation: up to 7 independent variables
e Space: x, ¥y, 2
o Time: t
e Direction: 6, ¢
e Wavelength: A @
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EPFL Raman Lidar - Inelastic Scattering

e LIDAR - Llght Detection And
Ranging

e Measures water vapor mixing
ratio during the day and night

e Raw spatial and time resolutions
of 1.25 m and 1 s respectively

e Range 15-500 m

e Solar blind (wavelengths shorter
than 0.300 um, where O3
absorbs most radiation)

e Raman Scattering (inelastic

scattering) - Temp: rotational,
MR: rotational/vibrational

Fig. A2. 3D projection of the EPFL Raman lidar.

Froidevaux et al. (2013) @
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Raman Lidar - Seerdorf, CH
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Froidevaux et al. (2013)
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Raman Lidar
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Radiation Intensity - Spherical Coordinates and Solid Angle

Directional distribution of thermal radiation is described via solid
angles. Solid angles are 2D angular spaces:

| r >

e 1D angular pace: da = dl/r ‘
radians [rad]
dl: infinitesimal length on a circle

dl

e 2D angular space: dw = dA,,/r?
steradians [sr]
dA,: infinitesimal area on a sphere




Radiation Intensity - Spherical Coordinates and Solid Angle

from The Light Measurement

Adapted by James J. Gross
Handbook.

Figure 3.2 — A 1-steradian solid angle Figure 3.3 — For a solid angle that
removed from a sphere. measures 1 steradian, A =r%
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Radiation Intensity

Let’s consider an emitting point on a surface. This point can
radiate into all directions contained within a hemisphere of radius r.

°

dA,: infinitesimal area on
the hemisphere of radius r

0: polar (zenith) angle

¢: azimuthal angle

dw: infinitesimal solid angle




Radiation Intensity - Solid Angle

T

e The infinitesimal area dAn is given by:
dA,, = r’sinfdfdo
e The infinitesimal solid angle is given by: @
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Spectral Radiance - Lambert’s Law

e L) spectral power per unit area, per unit solid angle, per
unit frequency at the point 7 in the direction of the unit
vector s

e Lambert’s Law: the fractional decrease of spectral radiance
is proportional to the mass of the absorbing or scattering
material met by the beam along ds

Ay
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Radiation: Attenuation

horizontal leaves vertical leaves

Bailey et al. (2014)
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Radiation: Scattering

horizontal leaves vertical leaves

Bailey et al. (2014)
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Radiation: Emission

horizontal leaves vertical leaves

Bailey et al. (2014)
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Shortwave and Longwave Radiation
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Average Global Radiation Balance
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Radiation balance for the atmosphere
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Radiative Properties of Surfaces

Surface type Other specifications Albedo (a) Emissivity (¢)
Water Small zenith angle 0.03-0.10 0.92-0.97
um Large zenith angle 0.10-1.00 0.92-0.97
RS T 4 dA Snow Old 0.40-0.70 0.82-0.89
—_ —— = Fresh 0.45-0.95 0.90-0.99
o R \L OéA Ice Sea 0.30-0.45 0.92-0.97
S 0.15 pm Glacier 0.20-0.40
Bare sand Dry 0.35-0.45 0.84-0.90
100 pm Wet 0.20-0.30 0.91-0.95
_ Bare soil Dry clay 0.20-0.40 0.95
€ = € )\d)\ Moist clay 0.10-0.20 0.97
Wet fallow field 0.05-0.07
3 pm Paved Concrete 0.17-027 0.71-0.88
Black gravel road 0.05-0.10 0.88-0.95
. Grass Long (1 m) 0.16 0.90
Albedo of wet grass is a few Short (0.02 m) 026 095
o Agricultural Wheat, rice, etc. 0.18-0.25 0.90-0.99
Orchards 0.15-0.20 0.90-0.95
A) IeSS th an d ry grass Forests Deciduous 0.10-0.20 0.97-0.98
Coniferous 0.05-0.15 0.97-0.99

Compiled from Sellers (1965), Kondratyev (1969), and Oke (1987).
Arya (2001)
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Albedo Variability - Murray, Utah
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Surface Irradiance

o Normal

to surface

Figure 1.7 (a) Illustration of the areas irradiated by a
circular beam on planes placed normal to, and at an
angle O to, the beam. The radiant energy flux (Js) is
spread over unit area (=nt(0-5AC)?) at normal incidence
ookt but over a larger area (=n(0-5BC)2) on the surface. The

flux density (Wm-2) on the surface (S) is less than that

at normal incidence (Si) by the ratio AC/BC=cos® or

sinB. Therefore, S=Sicos® and when ©=0°cos@=1 and
Diffuse solar radiation Direct-beam solar §=S,. For a horizontal surface ©=Z the zenith angle of

(sky, cloud) radiation (soler disc)  the Sun. (b) The components of incoming solar

radiation at the Earth’s surface (modified after
Monteith, 1973).

(b)

e Direct solar radiation: portion of short-wave radiation received in
a parallel beam “directly” from the sun

o Diffuse solar radiation: short-wave radiation reaching the Earth's
surface after having been scattered from the direct beam by
molecules or other agents in the atmosphere

0
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Surface Irradiance

(o) Normal

to surface

Area irradiated
at normal Figure 1.7 (a) Illustration of the areas irradiated by a

Surface 5 incidence circular beam on planes placed normal to, and at an
plane 5 angle O to, the beam. The radiant energy flux (Js) is
o spread over unit area (=n(0-5AC)?) at normal incidence
:’:’s'u;;:z"”d but over a larger area (=n(0-5BC)2) on the surface. The
flux density (Wm-2) on the surface (S) is less than that

at normal incidence (Si) by the ratio AC/BC=cos® or
sinf. Therefore, S=Sicos® and when ©=0°cos@=1 and
Diffuse solar radiation Direct-beam solar §=S,. For a horizontal surface ©=Z the zenith angle of
(sky, cloud) radiation (solar disc)  the Sun. (b) The components of incoming solar
radiation at the Earth’s surface (modified after
Monteith, 1973).

(b)

e Global = direct solar radiation + diffuse solar radiation
e For clear conditions:

e diffuse: ~ 10 — 20%

e direct: ~ 80 — 90%
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Direct/Diffuse Surface Irradiation
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Solar “Contant”
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Clear Atmospheric Flux Density of Solar Radiation

Irradiance Spectrum
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Cloudless Absorption Spectra
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Radiation Balance (Clear Diffuse Component)

K — Shortwave; L — Longwave; R,, — Net Radiation

Radiative flux (Wm™2)
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Radiation Balance

K — Shortwave; L — Longwave
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" Q* Figure 1.9 Radiation budget components for 30 July 1971, at
£ L 1 Matador, Saskatchewan (50°N) over a 0-2 m stand of native grass.
E Cloudles: s in the morning, increasing cloud in the later
t 400 - — afternoon and evening (after Ripley and Redmann, 1976). (Note—
= L In the text no signs have been given to individual radiation fluxes,
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Slope Solar Beam lIrradiance
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Slope Solar Beam lIrradiance
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Slope Solar Beam Irradiance
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Figure 5.7 (a) Diagrammatic representation of the angle @bet’v\veen
the surface and the incident direct-beam short-wave radiation, §. (b)

The form of the cosine law of illumination.
Oke (1987)

S = S;c0s0
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Slope Solar Beam lIrradiance
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Direct Beam Solar Radiation on Sloped Surfaces
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Figure 5.8 The diurnal variation of direct-beam solar radiation
upon surfaces with different angles of slope and aspect at
latitude 40°N for (a) the equinoxes (21 March, 21 September),
(b) summer solstice (22 June), and (c) winter solstice (22
December) (after Gates, 1965).

Oke (1987)
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Direct Beam Solar Radiation on Sloped Surfaces
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Figure 5.9 Total daily direct-beam solar radiation ()

incident upon slopes of differing angle and aspect at

latitude 45°N at the times of the equinoxes (diagram

constructed by Monteith, 1973, using data from @
Garnier and Ohmura, 1968).
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