
The theory of thermodynamics is one of the corner-
stones and crowning glories of classical physics. It has
applications not only in physics, chemistry, and the
Earth sciences, but in subjects as diverse as biology
and economics. Thermodynamics plays an important
role in our quantitative understanding of atmos-
pheric phenomena ranging from the smallest cloud
microphysical processes to the general circulation of
the atmosphere. The purpose of this chapter is to
introduce some fundamental ideas and relationships
in thermodynamics and to apply them to a number
of simple, but important, atmospheric situations.
Further applications of the concepts developed in
this chapter occur throughout this book.

The first section considers the ideal gas equation
and its application to dry air, water vapor, and moist
air. In Section 3.2 an important meteorological rela-
tionship, known as the hydrostatic equation, is derived
and interpreted. The next section is concerned with
the relationship between the mechanical work done
by a system and the heat the system receives, as
expressed in the first law of thermodynamics. There
follow several sections concerned with applications of
the foregoing to the atmosphere. Finally, in Section
3.7, the second law of thermodynamics and the con-
cept of entropy are introduced and used to derive
some important relationships for atmospheric science.

3.1 Gas Laws
Laboratory experiments show that the pressure, vol-
ume, and temperature of any material can be related
by an equation of state over a wide range of conditions.

All gases are found to follow approximately the same
equation of state, which is referred to as the ideal gas
equation. For most purposes we may assume that
atmospheric gases, whether considered individually
or as a mixture, obey the ideal gas equation exactly.
This section considers various forms of the ideal gas
equation and its application to dry and moist air.

The ideal gas equation may be written as

pV ! mRT (3.1)

where p, V, m, and T are the pressure (Pa), volume
(m3), mass (kg), and absolute temperature (in kelvin,
K, where K ! °C " 273.15) of the gas, respectively,
and R is a constant (called the gas constant) for 1 kg
of a gas. The value of R depends on the particular gas
under consideration. Because m!V ! #, where # is
the density of the gas, the ideal gas equation may also
be written in the form

p ! #RT (3.2)

For a unit mass (1 kg) of gas m ! 1 and we may write
(3.1) as

p$ ! RT (3.3)

where $ ! 1!# is the specific volume of the gas, i.e.,
the volume occupied by 1 kg of the gas at pressure p
and temperature T.

If the temperature is constant (3.1) reduces to
Boyle’s law,1 which states if the temperature of a
fixed mass of gas is held constant, the volume of the
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1 The Hon. Sir Robert Boyle (1627–1691) Fourteenth child of the first Earl of Cork. Physicist and chemist, often called the “father of
modern chemistry.” Discovered the law named after him in 1662. Responsible for the first sealed thermometer made in England. One of
the founders of the Royal Society of London, Boyle declared: “The Royal Society values no knowledge but as it has a tendency to use it!”
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64 Atmospheric Thermodynamics

gas is inversely proportional to its pressure. Changes
in the physical state of a body that occur at con-
stant temperature are termed isothermal. Also
implicit in (3.1) are Charles’ two laws.2 The first of
these laws states for a fixed mass of gas at constant

pressure, the volume of the gas is directly propor-
tional to its absolute temperature. The second of
Charles’ laws states for a fixed mass of gas held
within a fixed volume, the pressure of the gas is
proportional to its absolute temperature.

The kinetic theory of gases pictures a gas as an
assemblage of numerous identical particles (atoms
or molecules)3 that move in random directions
with a variety of speeds. The particles are assumed
to be very small compared to their average sepa-
ration and are perfectly elastic (i.e., if one of the
particles hits another, or a fixed wall, it rebounds,
on average, with the same speed that it possessed
just prior to the collision). It is shown in the
kinetic theory of gases that the mean kinetic
energy of the particles is proportional to the tem-
perature in degrees kelvin of the gas.

Imagine now a handball court in a zero-gravity
world in which the molecules of a gas are both
the balls and the players. A countless (but fixed)
number of elastic balls, each of mass m and with
mean velocity v, are moving randomly in all direc-
tions as they bounce back and forth between the
walls.7 The force exerted on a wall of the court by
the bouncing of balls is equal to the momentum
exchanged in a typical collision (which is propor-
tional to mv) multiplied by the frequency with

which the balls impact the wall. Consider the
following thought experiments.

i. Let the volume of the court increase while
holding v (and therefore the temperature of
the gas) constant. The frequency of collisions
will decrease in inverse proportion to the
change in volume of the court, and the force
(and therefore the pressure) on a wall will
decrease similarly. This is Boyle’s law.

ii. Let v increase while holding the volume of the
court constant. Both the frequency of
collisions with a wall and the momentum
exchanged in each collision of a ball with a
wall will increase in linear proportion to v.
Therefore, the pressure on a wall will increase
as mv2, which is proportional to the mean
kinetic energy of the molecules and therefore
to their temperature in degrees kelvin.This is
the second of Charles’ laws. It is left as an
exercise for the reader to prove Charles’ first
law, using the same analogy.

3.1 Gas Laws and the Kinetic Theory of Gases: Handball Anyone?

2 Jacques A. C. Charles (1746–1823) French physical chemist and inventor. Pioneer in the use of hydrogen in man-carrying balloons.
When Benjamin Franklin’s experiments with lightning became known, Charles repeated them with his own innovations. Franklin visited
Charles and congratulated him on his work.

3 The idea that a gas consists of atoms in random motion was first proposed by Lucretius.4 This idea was revived by Bernouilli5 in 1738
and was treated in mathematical detail by Maxwell.6

4 Titus Lucretius Carus (ca. 94–51 B.C.) Latin poet and philosopher. Building on the speculations of the Greek philosophers Leucippus
and Democritus, Lucretius, in his poem On the Nature of Things, propounds an atomic theory of matter. Lucretius’ basic theorem is
“nothing exists but atoms and voids.” He assumed that the quantity of matter and motion in the world never changes, thereby anticipating
by nearly 2000 years the statements of the conservation of mass and energy.

5 Daniel Bernouilli (1700–1782) Member of a famous family of Swiss mathematicians and physicists. Professor of botany, anatomy,
and natural philosophy (i.e., physics) at University of Basel. His most famous work, Hydrodynamics (1738), deals with the behavior of
fluids.

6 James Clark Maxwell (1831–1879) Scottish physicist. Made fundamental contributions to the theories of electricity and magnetism
(showed that light is an electromagnetic wave), color vision (produced one of the first color photographs), and the kinetic theory of gases.
First Cavendish Professor of Physics at Cambridge University; designed the Cavendish Laboratory.

7 In the kinetic theory of gases, the appropriate velocity of the molecules is their root mean square velocity, which is a little less than
the arithmetic mean of the molecular velocities.
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3.1 Gas Laws 65

We define now a gram-molecular weight or a mole
(abbreviated to mol) of any substance as the molecu-
lar weight, M, of the substance expressed in grams.8

For example, the molecular weight of water is 18.015;
therefore, 1 mol of water is 18.015 g of water. The
number of moles n in mass m (in grams) of a
substance is given by

(3.4)

Because the masses contained in 1 mol of different
substances bear the same ratios to each other as the
molecular weights of the substances, 1 mol of any
substance must contain the same number of mole-
cules as 1 mol of any other substance. Therefore, the
number of molecules in 1 mol of any substance is a
universal constant, called Avogadro’s9 number, NA.
The value of NA is 6.022 % 1023 per mole.

According to Avogadro’s hypothesis, gases contain-
ing the same number of molecules occupy the same
volumes at the same temperature and pressure. It
follows from this hypothesis that provided we take
the same number of molecules of any gas, the con-
stant R in (3.1) will be the same. However, 1 mol
of any gas contains the same number of molecules as
1 mol of any other gas. Therefore, the constant R in
(3.1) for 1 mol is the same for all gases; it is called the
universal gas constant (R*). The magnitude of R* is
8.3145 J K&1 mol&1. The ideal gas equation for 1 mol
of any gas can be written as

pV ! R*T (3.5)

and for n moles of any gas as

pV ! nR*T (3.6)

The gas constant for one molecule of any gas is also a
universal constant, known as Boltzmann’s10 constant, k.

n !
m
M

Because the gas constant for NA molecules is R*, we
have

(3.7)

Hence, for a gas containing n0 molecules per unit
volume, the ideal gas equation is

p ! n0kT (3.8)

If the pressure and specific volume of dry air (i.e.,
the mixture of gases in air, excluding water vapor)
are pd and $d, respectively, the ideal gas equation in
the form of (3.3) becomes

pd $d ! RdT (3.9)

where Rd is the gas constant for 1 kg of dry air. By
analogy with (3.4), we can define the apparent
molecular weight Md of dry air as the total mass (in
grams) of the constituent gases in dry air divided by
the total number of moles of the constituent gases;
that is,

(3.10)

where mi and Mi represent the mass (in grams) and
molecular weight, respectively, of the ith constituent
in the mixture. The apparent molecular weight of dry
air is 28.97. Because R* is the gas constant for 1 mol
of any substance, or for Md (! 28.97) grams of dry
air, the gas constant for 1 g of dry air is R*!Md, and
for 1 kg of dry air it is

(3.11)

Rd ! 1000 
R*
Md

! 1000 
8.3145
28.97

! 287.0 J K&1 kg&1

Md !
"

i
mi

"
i

mi

Mi

k !
R*
NA

8 In the first edition of this book we defined a kilogram-molecular weight (or kmole), which is 1000 moles. Although the kmole is
more consistent with the SI system of units than the mole, it has not become widely used. For example, the mole is used almost universally
in chemistry. One consequence of the use of the mole, rather than kmole, is that a factor of 1000, which serves to convert kmoles to moles,
appears in some relationships [e.g. (3.11) and (3.13) shown later].

9 Amedeo Avogadro, Count of Quaregna (1776–1856) Practiced law before turning to science at age 23. Later in life became a profes-
sor of physics at the University of Turin. His famous hypothesis was published in 1811, but it was not generally accepted until a half cen-
tury later. Introduced the term “molecule.”

10 Ludwig Boltzmann (1844–1906) Austrian physicist. Made fundamental contributions to the kinetic theory of gases. Adhered to the
view that atoms and molecules are real at a time when these concepts were in dispute. Committed suicide.
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66 Atmospheric Thermodynamics

The ideal gas equation may be applied to the indi-
vidual gaseous components of air. For example, for
water vapor (3.3) becomes

e$v ! RvT (3.12)

where e and $v are, respectively, the pressure and
specific volume of water vapor and Rv is the gas con-
stant for 1 kg of water vapor. Because the molecular
weight of water is Mw (! 18.016) and the gas con-
stant for Mw grams of water vapor is R*, we have

(3.13)

From (3.11) and (3.13),

(3.14)

Because air is a mixture of gases, it obeys Dalton’s11

law of partial pressures, which states the total pressure
exerted by a mixture of gases that do not interact
chemically is equal to the sum of the partial pressures
of the gases. The partial pressure of a gas is the pres-
sure it would exert at the same temperature as the
mixture if it alone occupied all of the volume that the
mixture occupies.

Exercise 3.1 If at 0 °C the density of dry air alone is
1.275 kg m&3 and the density of water vapor alone is
4.770 % 10&3 kg m&3, what is the total pressure
exerted by a mixture of the dry air and water vapor
at 0 °C?

Solution: From Dalton’s law of partial pressures,
the total pressure exerted by the mixture of dry air
and water vapor is equal to the sum of their partial
pressures. The partial pressure exerted by the dry air
is, from (3.9),

pd !
1

$d
 RdT ! #dRdT

Rd

Rv
!

Mw

Md
 # ' ! 0.622

Rv ! 1000 
R*
Mw

! 1000 
8.3145
18.016

! 461.51 J K&1 kg&1

where #d is the density of the dry air (1.275 kg m&3 at
273 K), Rd is the gas constant for 1 kg of dry air
(287.0 J K&1 kg&1), and T is 273.2 K. Therefore,

Similarly, the partial pressure exerted by the water
vapor is, from (3.12),

where #v is the density of the water vapor (4.770 %
10&3 kg m&3 at 273 K), Rv is the gas constant for 1 kg
of water vapor (461.5 J K&1 kg&1), and T is 273.2 K.
Therefore,

Hence, the total pressure exerted by the mixture of
dry air and water vapor is (999.7 " 6.014) hPa or
1006 hPa. ■

3.1.1 Virtual Temperature

Moist air has a smaller apparent molecular weight
than dry air. Therefore, it follows from (3.11) that
the gas constant for 1 kg of moist air is larger than
that for 1 kg of dry air. However, rather than use a
gas constant for moist air, the exact value of which
would depend on the amount of water vapor in
the air (which varies considerably), it is convenient
to retain the gas constant for dry air and use a
fictitious temperature (called the virtual tempera-
ture) in the ideal gas equation. We can derive an
expression for the virtual temperature in the fol-
lowing way.

Consider a volume V of moist air at temperature T
and total pressure p that contains mass md of dry air
and mass mv of water vapor. The density # of the
moist air is given by

# !
md " mv

V
 ! #(d " #(v

e ! 601.4 Pa ! 6.014 hPa

e !
1
$v

 RvT ! #vRvT

pd ! 9.997 % 104Pa ! 999.7 hPa

11 John Dalton (1766–1844) English chemist. Initiated modern atomic theory. In 1787 he commenced a meteorological diary
that he continued all his life, recording 200,000 observations. Showed that the rain and dew deposited in England are equivalent
to the quantity of water carried off by evaporation and by the rivers. This was an important contribution to the idea of a
hydrological cycle. First to describe color blindness. He “never found time to marry!” His funeral in Manchester was attended by
40,000 mourners.
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3.2 The Hydrostatic Equation 67

where #(d is the density that the same mass of dry air
would have if it alone occupied all of the volume V
and #(v is the density that the same mass of water
vapor would have if it alone occupied all of the vol-
ume V. We may call these partial densities. Because
# ! #(d " #(v, it might appear that the density of
moist air is greater than that of dry air. However, this
is not the case because the partial density #(v is less
than the true density of dry air.12 Applying the ideal
gas equation in the form of (3.2) to the water vapor
and dry air in turn, we have

and

where e and p(d are the partial pressures exerted by
the water vapor and the dry air, respectively. Also,
from Dalton’s law of partial pressures,

Combining the last four equations

or

where ' is defined by (3.14). The last equation may
be written as

(3.15)

where

(3.16)Tv # 
T

1 &
e
p

 (1 & ')
 

p ! #RdTv

# !
p

RdT
  [1 &

e
p

 (1 & ')]

# !
p & e
RdT

"
e

RvT

p ! p(d " e

p(d ! #(dRdT

e ! #(vRvT

Tv is called the virtual temperature. If this fictitious
temperature, rather than the actual temperature, is
used for moist air, the total pressure p and density #
of the moist air are related by a form of the ideal gas
equation [namely, (3.15)], but with the gas constant
the same as that for a unit mass of dry air (Rd) and
the actual temperature T replaced by the virtual tem-
perature Tv. It follows that the virtual temperature is
the temperature that dry air would need to attain in
order to have the same density as the moist air at the
same pressure. Because moist air is less dense than
dry air at the same temperature and pressure, the
virtual temperature is always greater than the
actual temperature. However, even for very warm
and moist air, the virtual temperature exceeds the
actual temperature by only a few degrees (e.g., see
Exercise 3.7 in Section 3.5).

3.2 The Hydrostatic Equation
Air pressure at any height in the atmosphere is due
to the force per unit area exerted by the weight of all
of the air lying above that height. Consequently,
atmospheric pressure decreases with increasing
height above the ground (in the same way that the
pressure at any level in a stack of foam mattresses
depends on how many mattresses lie above that
level). The net upward force acting on a thin horizon-
tal slab of air, due to the decrease in atmospheric
pressure with height, is generally very closely in bal-
ance with the downward force due to gravitational
attraction that acts on the slab. If the net upward
force on the slab is equal to the downward force on
the slab, the atmosphere is said to be in hydrostatic
balance. We will now derive an important equation
for the atmosphere in hydrostatic balance.

Consider a vertical column of air with unit hori-
zontal cross-sectional area (Fig. 3.1). The mass of air
between heights z and z " )z in the column is #)z,
where # is the density of the air at height z. The
downward force acting on this slab of air due to the
weight of the air is !#)z, where ! is the acceleration
due to gravity at height z. Now let us consider the net

12 The fact that moist air is less dense than dry air was first clearly stated by Sir Isaac Newton13 in his “Opticks” (1717). However, the
basis for this relationship was not generally understood until the latter half of the 18th century.

13 Sir Isaac Newton (1642–1727) Renowned English mathematician, physicist, and astronomer. A posthumous, premature (“I could
have been fitted into a quart mug at birth”), and only child. Discovered the laws of motion, the universal law of gravitation, calculus, the
colored spectrum of white light, and constructed the first reflecting telescope. He said of himself: “I do not know what I may appear to the
world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.”
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68 Atmospheric Thermodynamics

vertical force that acts on the slab of air between z
and z " )z due to the pressure of the surrounding
air. Let the change in pressure in going from height z
to height z " )z be )p, as indicated in Fig. 3.1.
Because we know that pressure decreases with
height, )p must be a negative quantity, and the
upward pressure on the lower face of the shaded
block must be slightly greater than the downward
pressure on the upper face of the block. Therefore,
the net vertical force on the block due to the vertical
gradient of pressure is upward and given by the posi-
tive quantity &)p, as indicated in Fig. 3.1. For an
atmosphere in hydrostatic balance, the balance of
forces in the vertical requires that

or, in the limit as ,

(3.17)
*p
*z

! &!#

)z : 0

&)p ! !#)z

Equation (3.17) is the hydrostatic equation.14 It
should be noted that the negative sign in (3.17)
ensures that the pressure decreases with increasing
height. Because # ! 1!$ (3.17) can be rearranged to
give

(3.18)

If the pressure at height z is p(z), we have, from
(3.17), above a fixed point on the Earth

or, because p(+) ! 0,

(3.19)

That is, the pressure at height z is equal to the weight
of the air in the vertical column of unit cross-
sectional area lying above that level. If the mass of
the Earth’s atmosphere were distributed uniformly
over the globe, retaining the Earth’s topography
in its present form, the pressure at sea level would
be 1.013 % 105 Pa, or 1013 hPa, which is referred to
as 1 atmosphere (or 1 atm).

3.2.1 Geopotential

The geopotential , at any point in the Earth’s
atmosphere is defined as the work that must be
done against the Earth’s gravitational field to raise
a mass of 1 kg from sea level to that point. In other
words, , is the gravitational potential per unit
mass. The units of geopotential are J kg&1 or m2 s&2.
The force (in newtons) acting on 1 kg at height z
above sea level is numerically equal to !. The work
(in joules) in raising 1 kg from z to z " dz is !dz;
therefore

or, using (3.18),

(3.20)d, # !dz ! &$dp

d, # !dz

p(z) ! $+

z
!#dz

&$p (+)

p (z)

dp ! $+

z
!#dz

!dz ! &$dp

Column with unit
  cross-sectional
    area

Pressure = p + δp

Pressure = p

Ground

z

–δp

gρδz

δz

Fig. 3.1 Balance of vertical forces in an atmosphere in
which there are no vertical accelerations (i.e., an atmosphere
in hydrostatic balance). Small blue arrows indicate the down-
ward force exerted on the air in the shaded slab due to the
pressure of the air above the slab; longer blue arrows indicate
the upward force exerted on the shaded slab due to the pres-
sure of the air below the slab. Because the slab has a unit
cross-sectional area, these two pressures have the same
numerical values as forces. The net upward force due to these
pressures (&)p) is indicated by the upward-pointing thick
black arrow. Because the incremental pressure change )p is a
negative quantity, &)p is positive. The downward-pointing
thick black arrow is the force acting on the shaded slab due
to the mass of the air in this slab.

14 In accordance with Eq. (1.3), the left-hand side of (3.17) is written in partial differential notation, i.e., *p!*z, because the variation of
pressure with height is taken with other independent variables held constant.
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3.2 The Hydrostatic Equation 69

The geopotential ,(z) at height z is thus given by

(3.21)

where the geopotential ,(0) at sea level (z ! 0) has, by
convention, been taken as zero. The geopotential at a
particular point in the atmosphere depends only on the
height of that point and not on the path through which
the unit mass is taken in reaching that point. The work
done in taking a mass of 1 kg from point A with geopo-
tential ,A to point B with geopotential ,B is ,B & ,A.

We can also define a quantity called the geopoten-
tial height Z as

(3.22)

where !0 is the globally averaged acceleration due to
gravity at the Earth’s surface (taken as 9.81 m s&2).
Geopotential height is used as the vertical coordinate
in most atmospheric applications in which energy
plays an important role (e.g., in large-scale atmos-
pheric motions). It can be seen from Table 3.1 that
the values of z and Z are almost the same in the
lower atmosphere where !0 % !.

In meteorological practice it is not convenient to
deal with the density of a gas, #, the value of which is
generally not measured. By making use of (3.2) or
(3.15) to eliminate # in (3.17), we obtain

Rearranging the last expression and using (3.20)
yields

(3.23)d, ! ! dz ! &RT
dp
p

! &RdTv
dp
p

*p
*z

! &
pg
RT

! &
pg

RdTv

Z # 
,(z)

!0
!  

1
!0
$z

0
!dz

,(z) ! $z

0

!dz

If we now integrate between pressure levels p1 and
p2, with geopotentials ,1 and ,2, respectively,

or

Dividing both sides of the last equation by !0 and
reversing the limits of integration yields

(3.24)

This difference Z2 & Z1 is referred to as the (geopo-
tential) thickness of the layer between pressure levels
p1 and p2.

3.2.2 Scale Height and the Hypsometric
Equation

For an isothermal atmosphere (i.e., temperature
constant with height), if the virtual temperature
correction is neglected, (3.24) becomes

(3.25)

or

(3.26)

where

(3.27)

H is the scale height as discussed in Section 1.3.4.
Because the atmosphere is well mixed below the

turbopause (about 105 km), the pressures and den-
sities of the individual gases decrease with altitude
at the same rate and with a scale height propor-
tional to the gas constant R (and therefore
inversely proportional to the apparent molecular
weight of the mixture). If we take a value for Tv of
255 K (the approximate mean value for the tropo-
sphere and stratosphere), the scale height H for
air in the atmosphere is found from (3.27) to be
about 7.5 km.

H # RT
!0

! 29.3T

p2 ! p1 exp&&
(Z2 & Z1)

H '

Z2 & Z1 ! H ln(p1!p2)

Z2 & Z1 !
Rd

!0
 $p1

p2

Tv
dp

p

,
2

& ,
1

! &Rd $p2

p1

Tv
dp

p

$,2

,1

d, ! &$p2

p1

RdTv 
dp

p

Table 3.1 Values of geopotential height (Z) and acceleration
due to gravity (!) at 40° latitude for geometric height (z)

z (km) Z (km) ! (m s!2)

0 0 9.81

1 1.00 9.80

10 9.99 9.77

100 98.47 9.50

500 463.6 8.43

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 69



70 Atmospheric Thermodynamics

Above the turbopause the vertical distribution of
gases is largely controlled by molecular diffusion and
a scale height may then be defined for each of the
individual gases in air. Because for each gas the scale
height is proportional to the gas constant for a unit
mass of the gas, which varies inversely as the molecu-
lar weight of the gas [see, for example (3.13)], the
pressures (and densities) of heavier gases fall off
more rapidly with height above the turbopause than
those of lighter gases.

Exercise 3.2 If the ratio of the number density of
oxygen atoms to the number density of hydrogen
atoms at a geopotential height of 200 km above the
Earth’s surface is 105, calculate the ratio of the num-
ber densities of these two constituents at a geopoten-
tial height of 1400 km. Assume an isothermal
atmosphere between 200 and 1400 km with a tem-
perature of 2000 K.

Solution: At these altitudes, the distribution of
the individual gases is determined by diffusion and
therefore by (3.26). Also, at constant temperature,
the ratio of the number densities of two gases is
equal to the ratio of their pressures. From (3.26)

From the definition of scale height (3.27) and analo-
gous expressions to (3.11) for oxygen and hydrogen
atoms and the fact that the atomic weights of oxygen
and hydrogen are 16 and 1, respectively, we have at
2000 K

and

 ! 1.695 % 106 m

Hhyd !
1000R*

1
  
2000
9.81

 m ! 8.3145  
2 % 106

9.81
 m

 ! 0.106 % 106 m

Hoxy !
1000R*

16
  
2000
9.81

 m !
8.3145

16
  
2 % 106

9.81
 m

 ! 105 exp &&1200 km ( 1
Hoxy

&
1

Hhyd
)'

!
(p200 km)oxy exp[&1200 km!Hoxy (km)]
(p200 km)hyd exp[&1200 km!Hhyd (km)]

(p1400 km)oxy

(p1400 km)hyd

Therefore,

and

Hence, the ratio of the number densities of oxygen to
hydrogen atoms at a geopotential height of 1400 km
is 2.5. ■

The temperature of the atmosphere generally
varies with height and the virtual temeprature
correction cannot always be neglected. In this more
general case (3.24) may be integrated if we define
a mean virtual temperature with respect to p as
shown in Fig. 3.2. That is,

(3.28)

Then, from (3.24) and (3.28),

(3.29)

Equation (3.29) is called the hypsometric equation.

Exercise 3.3 Calculate the geopotential height of
the 1000-hPa pressure surface when the pressure at
sea level is 1014 hPa. The scale height of the atmos-
phere may be taken as 8 km.

Z2 & Z1 ! H ln (p1

p2
) !

RdTv

!0
 ln (p1

p2
)

Tv #
$p1

p2

Tv d(ln p)

$p1

p2

d(ln p)
!
$p1

p2

Tv 
dp
p

ln (p1

p2
)

Tv

(p1400 km)oxy

(p1400 km)hyd
! 105 exp (&10.6) ! 2.5

 ! 8.84 % 10&3 km&1

1
Hoxy

&
1

Hhyd
 ! 8.84 % 10&6 m&1

Virtual temperature, Tv (K) 
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Fig. 3.2 Vertical profile, or sounding, of virtual temperature.
If area ABC ! area CDE, is the mean virtual temperature
with respect to ln p between the pressure levels p1 and p2.

Tv
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3.2 The Hydrostatic Equation 71

Solution: From the hypsometric equation (3.29)

where p0 is the sea-level pressure and the rela-
tionship has been used.
Substituting into this expression, and
recalling that Zsea level ! 0 (Table 3.1), gives

Therefore, with p0 ! 1014 hPa, the geopotential height
Z1000 hPa of the 1000-hPa pressure surface is found to
be 112 m above sea level. ■

3.2.3 Thickness and Heights of Constant
Pressure Surfaces

Because pressure decreases monotonically with
height, pressure surfaces (i.e., imaginary surfaces on
which pressure is constant) never intersect. It can be
seen from (3.29) that the thickness of the layer
between any two pressure surfaces p2 and p1 is pro-
portional to the mean virtual temperature of the
layer, . We can visualize that as increases, the air
between the two pressure levels expands and the
layer becomes thicker.

Exercise 3.4 Calculate the thickness of the layer
between the 1000- and 500-hPa pressure surfaces
(a) at a point in the tropics where the mean virtual
temperature of the layer is 15 °C and (b) at a point
in the polar regions where the corresponding mean
virtual temperature is &40 °C.

Solution: From (3.29)

Therefore, for the tropics with , -Z !
5846 m. For polar regions with 

. In operational practice, thickness is rounded to
the nearest 10 m and is expressed in decameters (dam).
Hence, answers for this exercise would normally be
expressed as 585 and 473 dam, respectively. ■

4730 m
-Z !Tv ! 233 K,

Tv ! 288 K

-Z ! Z500 hPa & Z1000 hPa !
RdTv

!0
 ln (1000

500 ) ! 20.3Tv m

TvTv

Z1000 hPa % 8 (p0 & 1000)

H % 8000
ln (1 " x) % x  for x .. 1

! H ln (1 "
p0 & 1000

1000 ) % H (p0 & 1000
1000 )

Z1000 hPa & Zsea level ! H ln ( p0

1000)

Before the advent of remote sensing of the atmos-
phere by satellite-borne radiometers, thickness was
evaluated almost exclusively from radiosonde data,
which provide measurements of the pressure, tempera-
ture, and humidity at various levels in the atmosphere.
The virtual temperature Tv at each level was calculated
and mean values for various layers were estimated
using the graphical method illustrated in Fig. 3.2. Using
soundings from a network of stations, it was possible to
construct topographical maps of the distribution of
geopotential height on selected pressure surfaces.
These calculations, which were first performed by
observers working on site, are now incorporated into
sophisticated data assimilation protocols, as described
in the Appendix of Chapter 8 on the book Web site.

In moving from a given pressure surface to
another pressure surface located above or below it,
the change in the geopotential height is related geo-
metrically to the thickness of the intervening layer,
which, in turn, is directly proportional to the mean
virtual temperature of the layer. Therefore, if the
three-dimensional distribution of virtual temperature
is known, together with the distribution of geopoten-
tial height on one pressure surface, it is possible to
infer the distribution of geopotential height of any
other pressure surface. The same hypsometric rela-
tionship between the three-dimensional temperature
field and the shape of pressure surface can be used in
a qualitative way to gain some useful insights into the
three-dimensional structure of atmospheric distur-
bances, as illustrated by the following examples.

i. The air near the center of a hurricane is warmer
than its surroundings. Consequently, the intensity
of the storm (as measured by the depression of
the isobaric surfaces) must decrease with height
(Fig. 3.3a). The winds in such warm core lows

Fig. 3.3 Cross sections in the longitude–height plane. The
solid lines indicate various constant pressure surfaces. The
sections are drawn such that the thickness between adjacent
pressure surfaces is smaller in the cold (blue) regions and
larger in the warm (red) regions.
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72 Atmospheric Thermodynamics

always exhibit their greatest intensity near the
ground and diminish with increasing height above
the ground.

ii. Some upper level lows do not extend downward
to the ground, as indicated in Fig. 3.3b. It follows
from the hypsometric equation that these lows
must be cold core below the level at which they
achieve their greatest intensity and warm core
above that level, as shown in Fig. 3.3b.

3.2.4 Reduction of Pressure to Sea Level

In mountainous regions the difference in surface
pressure from one observing station to another is
largely due to differences in elevation. To isolate that
part of the pressure field that is due to the passage of
weather systems, it is necessary to reduce the pres-
sures to a common reference level. For this purpose,
sea level is normally used.

Let the subscripts g and 0 refer to conditions at the
ground and at sea level (Z ! 0), respectively. Then, for
the layer between the Earth’s surface and sea level,
the hypsometric equation (3.29) assumes the form

(3.30)

which can be solved to obtain the sea-level pressure

(3.31)

If Z! is small, the scale height can be evaluated
from the ground temperature. Also, if 
the exponential in (3.31) can be approximated by

, in which case (3.31) becomes

(3.32)

Because and , the pres-
sure correction (in hPa) is roughly equal to Z! (in

H %  8000 mp! % 1000 hpa

p0 & p! %  p! 
Z!

H
! p! (!0Z!

RdTv
)

1 " Z! ! H

Z! ! H .. 1,
H

p0 ! p! exp (Z!

H) ! p! exp (!0Z!

RdT/
)

Z! ! H ln 
p0

p!

meters) divided by 8. In other words, for altitudes up
to a few hundred meters above (or below) sea level,
the pressure decreases by about 1 hPa for every 8 m
of vertical ascent.

3.3 The First Law of
Thermodynamics15

In addition to the macroscopic kinetic and potential
energy that a system as a whole may possess, it also
contains internal energy due to the kinetic and poten-
tial energy of its molecules or atoms. Increases in
internal kinetic energy in the form of molecular
motions are manifested as increases in the tempera-
ture of the system, whereas changes in the potential
energy of the molecules are caused by changes in
their relative positions by virtue of any forces that
act between the molecules.

Let us suppose that a closed system16 of unit mass
takes in a certain quantity of thermal energy q
(measured in joules), which it can receive by thermal
conduction and!or radiation. As a result the system
may do a certain amount of external work w (also
measured in joules). The excess of the energy sup-
plied to the body over and above the external work
done by the body is q & w. Therefore, if there is no
change in the macroscopic kinetic and potential
energy of the body, it follows from the principle of
conservation of energy that the internal energy of
the system must increase by q & w. That is,

(3.33)

where u1 and u2 are the internal energies of the sys-
tem before and after the change. In differential form
(3.33) becomes

(3.34)

where dq is the differential increment of heat
added to the system, dw is the differential element

dq & dw ! du

q & w ! u2 & u1

15 The first law of thermodynamics is a statement of the conservation of energy, taking into account the conversions between the vari-
ous forms that it can assume and the exchanges of energy between a system and its environment that can take place through the transfer
of heat and the performance of mechanical work. A general formulation of the first law of thermodynamics is beyond the scope of this text
because it requires consideration of conservation laws, not only for energy, but also for momentum and mass. This section presents a sim-
plified formulation that ignores the macroscopic kinetic and potential energy (i.e., the energy that air molecules possess by virtue of their
height above sea level and their organized fluid motions). As it turns out, the expression for the first law of thermodynamics that emerges
in this simplified treatment is identical to the one recovered from a more complete treatment of the conservation laws, as is done in
J. R. Holton, Introduction to Dynamic Meteorology, 4th Edition, Academic Press, New York, 2004, pp. 146–149.

16 A closed system is one in which the total amount of matter, which may be in the form of gas, liquid, solid or a mixture of these
phases, is kept constant.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 72



3.3 The First Law of Thermodynamics 73

of work done by the system, and du is the differen-
tial increase in internal energy of the system.
Equations (3.33) and (3.34) are statements of the
first law of thermodynamics. In fact (3.34) provides
a definition of du. The change in internal energy du
depends only on the initial and final states of the
system and is therefore independent of the manner
by which the system is transferred between these
two states. Such parameters are referred to as func-
tions of state.17

To visualize the work term dw in (3.34) in a sim-
ple case, consider a substance, often called the
working substance, contained in a cylinder of fixed
cross-sectional area that is fitted with a movable,
frictionless piston (Fig. 3.4). The volume of the sub-
stance is proportional to the distance from the base
of the cylinder to the face of the piston and can be
represented on the horizontal axis of the graph
shown in Fig. 3.4. The pressure of the substance in
the cylinder can be represented on the vertical axis
of this graph. Therefore, every state of the sub-
stance, corresponding to a given position of the
piston, is represented by a point on this
pressure–volume (p–V) diagram. When the sub-
stance is in equilibrium at a state represented by
point P on the graph, its pressure is p and its vol-
ume is V (Fig. 3.4). If the piston moves outward
through an incremental distance dx while its pres-
sure remains essentially constant at p, the work dW
done by the substance in pushing the external force
F through a distance dx is

or, because F ! pA where A is the cross-sectional area
of the face of the piston,

(3.35)

In other words, the work done by the substance
when its volume increases by a small increment dV
is equal to the pressure of the substance multiplied
by its increase in volume, which is equal to the
blue-shaded area in the graph shown in Fig. 3.4;
that is, it is equal to the area under the curve PQ.

dW ! pA dx ! pdV

dW ! Fdx

When the substance passes from state A with
volume V1 to state B with volume V2 (Fig. 3.4), dur-
ing which its pressure p changes, the work W done
by the material is equal to the area under the curve
AB. That is,

(3.36)

Equations (3.35) and (3.36) are quite general and
represent work done by any substance (or system)
due to a change in its volume. If V2 0 V1, W is posi-
tive, indicating that the substance does work on
its environment. If V2 . V1, W is negative, which
indicates that the environment does work on the
substance.

The p&V diagram shown in Fig. 3.4 is an example
of a thermodynamic diagram in which the physical
state of a substance is represented by two thermody-
namic variables. Such diagrams are very useful in
meteorology; we will discuss other examples later in
this chapter.

W ! $V2

V1

pdV

17 Neither the heat q nor the work w are functions of state, since their values depend on how a system is transformed from one state to
another. For example, a system may or may not receive heat and it may or may not do external work as it undergoes transitions between
different states.
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Fig. 3.4 Representation of the state of a working substance
in a cylinder on a p–V diagram. The work done by the work-
ing substance in passing from P to Q is p dV, which is equal to
the blue-shaded area. [Reprinted from Atmospheric Science: An
Introductory Survey, 1st Edition, J. M. Wallace and P. V. Hobbs,
p. 62, Copyright 1977, with permission from Elsevier.]
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74 Atmospheric Thermodynamics

If we are dealing with a unit mass of a substance,
the volume V is replaced by the specific volume $.
Therefore, the work dw that is done when the spe-
cific volume increases by d$ is

(3.37)

Combination of (3.34) and (3.37) yields

(3.38)

which is an alternative statement of the first law of
thermodynamics.18

3.3.1 Joule’s Law

Following a series of laboratory experiments on air,
Joule19 concluded in 1848 that when a gas expands
without doing external work, by expanding into a
chamber that has been evacuated, and without taking
in or giving out heat, the temperature of the gas does

dq ! du " pd$

dw ! pd$

not change. This statement, which is known as Joule’s
law, is strictly true only for an ideal gas, but air (and
many other gases) behaves very similarly to an ideal
gas over a wide range of conditions.

Joule’s law leads to an important conclusion con-
cerning the internal energy of an ideal gas. If a gas
neither does external work nor takes in or gives out
heat, dw ! 0 and dq ! 0 in (3.38), so that du ! 0.
Also, according to Joule’s law, under these conditions
the temperature of the gas does not change, which
implies that the kinetic energy of the molecules
remains constant. Therefore, because the total inter-
nal energy of the gas is constant, that part of the
internal energy due to the potential energy must also
remain unchanged, even though the volume of the
gas changes. In other words, the internal energy of an
ideal gas is independent of its volume if the tempera-
ture is kept constant. This can be the case only if the
molecules of an ideal gas do not exert forces on each
other. In this case, the internal energy of an ideal gas
will depend only on its temperature.20

18 We have assumed here that the only work done by or on a system is due to a change in the volume of the system. However, there are
other ways in which a system may do work, e.g., by the creation of new surface area between two phases (such as between liquid and air
when a soap film is formed). Unless stated otherwise, we will assume that the work done by or on a system is due entirely to changes in the
volume of the system.

19 James Prescott Joule (1818–1889) Son of a wealthy English brewer; one of the great experimentalists of the 19th century. He started
his scientific work (carried out in laboratories in his home and at his own expense) at age 19. He measured the mechanical equivalent of
heat, recognized the dynamical nature of heat, and developed the principle of conservation of energy.

20 Subsequent experiments carried out by Lord Kelvin21 revealed the existence of small forces between the molecules of a gas.
21 Lord Kelvin 1st Baron (William Thomson) (1824–1907) Scottish mathematician and physicist. Entered Glasgow University at age 11.

At 22 became Professor of Natural Philosophy at the same university. Carried out incomparable work in thermodynamics, electricity, and
hydrodynamics.

Box 3.1. showed that the gas laws can be illus-
trated by picturing the molecules of a gas as
elastic balls bouncing around randomly in a
handball court. Suppose now that the walls of
the court are permitted to move outward when
subjected to a force. The force on the walls is
supplied by the impact of the balls, and the work
required to move the walls outward comes from
a decrease in the kinetic energy of the balls that
rebound from the walls with lower velocities

than they struck them. This decrease in kinetic
energy is in accordance with the first law of
thermodynamics under adiabatic conditions. The
work done by the system by pushing the walls
outward is equal to the decrease in the internal
energy of the system [see (3.38)]. Of course, if
the outside of the walls of the court are bom-
barded by balls in a similar manner to the inside
walls, there will be no net force on the walls and
no work will be done.

3.2 More Handball?
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3.3 The First Law of Thermodynamics 75

3.3.2 Specific Heats

Suppose a small quantity of heat dq is given to a unit
mass of a material and, as a consequence, the tem-
perature of the material increases from T to T " dT
without any changes in phase occurring within the
material. The ratio dq!dT is called the specific heat of
the material. The specific heat defined in this way
could have any number of values, depending on how
the material changes as it receives the heat. If the
volume of the material is kept constant, a specific
heat at constant volume cv is defined

(3.39)

However, if the volume of the material is constant
(3.38) becomes dq ! du. Therefore

For an ideal gas, Joule’s law applies and therefore u
depends only on temperature. Therefore, regardless
of whether the volume of a gas changes, we may write

(3.40)

From (3.38) and (3.40), the first law of thermody-
namics for an ideal gas can be written in the form22

(3.41)

Because u is a function of state, no matter how the
material changes from state 1 to state 2, the change
in its internal energy is, from (3.40),

We can also define a specific heat at constant
pressure cp

(3.42)cp ! (dq
dT)p const

u2 & u1 ! $T2

T1

cvdT

dq ! cvdT " pd$

cv ! (du
dT)

cv ! (du
dT)v const

cv ! (dq
dT)v const

where the material is allowed to expand as heat is
added to it and its temperature rises, but its pressure
remains constant. In this case, a certain amount of
the heat added to the material will have to be
expended to do work as the system expands against
the constant pressure of its environment. Therefore, a
larger quantity of heat must be added to the material
to raise its temperature by a given amount than if the
volume of the material were kept constant. For the
case of an ideal gas, this inequality can be seen math-
ematically as follows. Equation (3.41) can be rewrit-
ten in the form

(3.43)

From the ideal gas equation (3.3), d(p$) ! RdT.
Therefore (3.43) becomes

(3.44)

At constant pressure, the last term in (3.44) vanishes;
therefore, from (3.42) and (3.44),

(3.45)

The specific heats at constant volume and at con-
stant pressure for dry air are 717 and 1004 J K&1

kg&1, respectively, and the difference between
them is 287 J K&1 kg&1, which is the gas constant
for dry air. It can be shown that for ideal
monatomic gases cp:cv:R ! 5:3:2, and for ideal
diatomic gases cp:cv:R ! 7:5:2.

By combining (3.44) and (3.45) we obtain an alter-
nate form of the first law of thermodynamics:

(3.46)

3.3.3 Enthalpy

If heat is added to a material at constant pressure
so that the specific volume of the material
increases from $1 to $2, the work done by a unit
mass of the material is p($2 & $1). Therefore,
from (3.38), the finite quantity of heat -q added to

dq ! cpdT & $ dp

cp ! cv " R

dq ! (cv " R)dT & $ dp

dq ! cvdT " d(p$) & $ dp

22 The term dq is sometimes called the diabatic (or nonadiabatic) heating or cooling, where “diabatic” means involving the transfer of
heat. The term “diabatic” would be redundant if “heating” and “cooling” were always taken to mean “the addition or removal of heat.”
However, “heating” and “cooling” are often used in the sense of “to raise or lower the temperature of,” in which case it is meaningful to
distinguish between that part of the temperature change dT due to diabatic effects (dq) and that part due to adiabatic effects (pd$).
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76 Atmospheric Thermodynamics

a unit mass of the material at constant pressure is
given by

where u1 and u2 are, respectively, the initial and final
internal energies for a unit mass of the material.
Therefore, at constant pressure,

where h is the enthalpy of a unit mass of the material,
which is defined by

(3.47)

Because u, p, and $ are functions of state, h is a func-
tion of state. Differentiating (3.47), we obtain

Substituting for du from (3.40) and combining with
(3.43), we obtain

(3.48)

which is yet another form of the first law of thermo-
dynamics.

By comparing (3.46) and (3.48) we see that

(3.49)

or, in integrated form,

(3.50)

where h is taken as zero when T ! 0. In view of
(3.50), h corresponds to the heat required to raise the
temperature of a material from 0 to T K at constant
pressure.

When a layer of air that is at rest and in hydrostatic
balance is heated, for example, by radiative transfer,
the weight of the overlying air pressing down on it

h ! cpT

dh ! cpdT

dq ! dh & $dp

dh ! du " d(p$)

h # u " p$

-q ! h2 & h1

 ! (u2 " p$2) & (u1 " p$1)

-q ! (u2 & u1) " p($2 & $1)

remains constant. Hence, the heating is at constant
pressure. The energy added to the air is realized in the
form of an increase in enthalpy (or sensible heat, as
atmospheric scientists commonly refer to it) and

The air within the layer expands as it warms, doing
work on the overlying air by lifting it against the
Earth’s gravitational attraction. Of the energy per
unit mass imparted to the air by the heating, we see
from (3.40) and (3.41) that du ! cvdT is reflected in
an increase in internal energy and pd$ ! RdT is
expended doing work on the overlying air. Because
the Earth’s atmosphere is made up mainly of the
diatomic gases N2 and O2, the energy added by the
heating dq is partitioned between the increase in
internal energy du and the expansion work pd$ in
the ratio 5:2.

We can write a more general expression that is
applicable to a moving air parcel, the pressure of
which changes as it rises or sinks relative to the sur-
rounding air. By combining (3.20), (3.48), and (3.50)
we obtain

(3.51)

Hence, if the material is a parcel of air with a fixed
mass that is moving about in an hydrostatic atmos-
phere, the quantity (h " ,), which is called the dry
static energy, is constant provided the parcel neither
gains nor loses heat (i.e., dq ! 0).23

3.4 Adiabatic Processes
If a material undergoes a change in its physical state
(e.g., its pressure, volume, or temperature) without
any heat being added to it or withdrawn from it, the
change is said to be adiabatic.

Suppose that the initial state of a material is repre-
sented by the point A on the p–V diagram in Fig. 3.5
and that when the material undergoes an isothermal
transformation it moves along the line AB. If the same
material underwent a similar change in volume but
under adiabatic conditions, the transformation would

dq ! d(h " ,) ! d(cpT " ,)

dq ! dh ! cpdT

23 Strictly speaking, Eq. (3.51) holds only for an atmosphere in which there are no fluid motions. However, it is correct to within a few
percent for the Earth’s atmosphere where the kinetic energy of fluid motions represents only a very small fraction of the total energy.
An exact relationship can be obtained by using Newton’s second law of motion and the continuity equation in place of Eq. (3.20) in the
derivation. See J. R. Holton, An Introduction to Dynamic Meteorology, 4th ed., Academic Press, pp. 46–49 (2004).
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3.4 Adiabatic Processes 77

be represented by a curve such as AC, which is called
an adiabat. The reason why the adiabat AC is steeper
than the isotherm AB on a p–V diagram can be seen
as follows. During adiabatic compression, the internal
energy increases [because dq ! 0 and pd$ is negative
in (3.38)] and therefore the temperature of the system
rises. However, for isothermal compression, the tem-
perature remains constant. Hence, TC 0 TB and there-
fore pC 0 pB.

3.4.1 Concept of an Air Parcel

In many fluid mechanics problems, mixing is viewed
as a result of the random motions of individual mole-
cules. In the atmosphere, molecular mixing is impor-
tant only within a centimeter of the Earth’s surface
and at levels above the turbopause (*105 km). At
intermediate levels, virtually all mixing in the vertical
is accomplished by the exchange of macroscale “air
parcels” with horizontal dimensions ranging from
millimeters to the scale of the Earth itself.

To gain some insights into the nature of vertical
mixing in the atmosphere, it is useful to consider the
behavior of an air parcel of infinitesimal dimensions
that is assumed to be

i. thermally insulated from its environment so
that its temperature changes adiabatically as it
rises or sinks, always remaining at exactly the
same pressure as the environmental air at the
same level,24 which is assumed to be in
hydrostatic equilibrium; and

ii. moving slowly enough that the macroscopic
kinetic energy of the air parcel is a negligible
fraction of its total energy.

Although in the case of real air parcels one or
more of these assumptions is nearly always violated

to some extent, this simple, idealized model is helpful
in understanding some of the physical processes that
influence the distribution of vertical motions and
vertical mixing in the atmosphere.

3.4.2 The Dry Adiabatic Lapse Rate

We will now derive an expression for the rate of
change of temperature with height of a parcel of dry
air that moves about in the Earth’s atmosphere while
always satisfying the conditions listed at the end of
Section 3.4.1. Because the air parcel undergoes only
adiabatic transformations (dq ! 0) and the atmos-
phere is in hydrostatic equilibrium, for a unit mass of
air in the parcel we have, from (3.51),

(3.52)

Dividing through by dz and making use of (3.20) we
obtain

(3.53)

where 1d is called the dry adiabatic lapse rate. Because
an air parcel expands as it rises in the atmosphere, its
temperature will decrease with height so that 1d
defined by (3.53) is a positive quantity. Substituting
! ! 9.81 m s&2 and cp ! 1004 J K&1 kg&1 into (3.53)
gives 1d ! 0.0098 K m&1 or 9.8 K km&1, which is the
numerical value of the dry adiabatic lapse rate.

It should be emphasized again that 1d is the rate of
change of temperature following a parcel of dry air
that is being raised or lowered adiabatically in the
atmosphere. The actual lapse rate of temperature in a
column of air, which we will indicate by 1 ! *T!*z,
as measured, for example, by a radiosonde, averages
6–7 K km&1 in the troposphere, but it takes on a wide
range of values at individual locations.

3.4.3 Potential Temperature

The potential temperature 2 of an air parcel is defined
as the temperature that the parcel of air would have
if it were expanded or compressed adiabatically from
its existing pressure and temperature to a standard
pressure p0 (generally taken as 1000 hPa).

&(dT
dz)dry parcel

!
!
cp

 # 1d

d(cpT " ,) ! 0

24 Any pressure differences between the parcel and its environment give rise to sound waves that produce an almost instantaneous
adjustment. Temperature differences, however, are eliminated by much slower processes.
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Fig. 3.5 An isotherm and an adiabat on a p–V diagram.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 77



78 Atmospheric Thermodynamics

We can derive an expression for the potential tem-
perature of an air parcel in terms of its pressure p,
temperature T, and the standard pressure p0 as fol-
lows. For an adiabatic transformation (dq ! 0) (3.46)
becomes

Substituting $ from (3.3) into this expression yields

Integrating upward from p0 (where, by definition,
T ! 2) to p, we obtain

or

Taking the antilog of both sides

or

(3.54)

Equation (3.54) is called Poisson’s25 equation. It is
usually assumed that and

; therefore,
Parameters that remain constant during certain

transformations are said to be conserved. Potential
temperature is a conserved quantity for an air parcel
that moves around in the atmosphere under adia-
batic conditions (see Exercise 3.36). Potential tem-
perature is an extremely useful parameter in
atmospheric thermodynamics, since atmospheric
processes are often close to adiabatic, and therefore
2 remains essentially constant, like density in an
incompressible fluid.

R !cp %  0.286.cp %  cpd ! 1004 J K&1 kg&1

R %  Rd ! 287 J K&1 kg&1

2 ! 3 (p0

p )
R !cp

(T
2)

cp!R
!

p
p0

cp

R
 ln 

T
2

! ln 
p
p0

cp

R$T

2

dT
T

! $p

p0

dp
p

cp

R
 
dT
T

&
dp
p

! 0

cpdT & $dp ! 0

3.4.4 Thermodynamic Diagrams

Poisson’s equation may be conveniently solved in
graphical form. If pressure is plotted on the ordinate
on a distorted scale, in which the distance from the ori-
gin is proportional to , or p0.286 is used, regardless
of whether air is dry or moist, and temperature (in K)
is plotted on the abscissa, then (3.54) becomes

(3.55)

For a constant value of 2, Eq. (3.55) is of the form y 4 x
where y ! p0.286, x ! T, and the constant of proportion-
ality is . Each constant value of 2 represents
a dry adiabat, which is defined by a straight line with a
particular slope that passes through the point p ! 0,
T ! 0. If the pressure scale is inverted so that p
increases downward, the relation takes the form shown
in Fig. 3.6, which is the basis for the pseudoadiabatic
chart that used to be widely used for meteorological
computations. The region of the chart of greatest inter-
est in the atmosphere is the portion shown within the
dotted lines in Fig. 3.6, and this is generally the only
portion of the chart that is printed.

In the pseudoadiabatic chart, isotherms are verti-
cal and dry adiabats (constant 2) are oriented at an
acute angle relative to isotherms (Fig. 3.6). Because
changes in temperature with height in the atmos-
phere generally lie between isothermal and dry adia-
batic, most temperature soundings lie within a
narrow range of angles when plotted on a pseudo-
adiabatic chart. This restriction is overcome in the
so-called skew T &ln p chart, in which the ordinate
(y) is &ln p (the minus sign ensures that lower pres-
sure levels are located above higher pressure levels
on the chart) and the abscissa (x) is

(3.56)

Since, from (3.56),

and for an isotherm T is constant, the relation-
ship between y and x for an isotherm is of the form

y !
x & T

(constant)

x ! T " (constant)y ! T & (constant) ln p

p0.286
0 !2

p0.286 ! (p0.286
0

2 )T

pRd!cp

25 Simeon Denis Poisson (1781–1840) French mathematician. Studied medicine but turned to applied mathematics and became the
first professor of mechanics at the Sorbonne in Paris.
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3.5 Water Vapor in Air 79

y ! mx " c, where m is the same for all isotherms
and c is a different constant for each isotherm.
Therefore, on the skew T & ln p chart, isotherms are
straight parallel lines that slope upward from left
to right. The scale for the x axis is generally chosen
to make the angle between the isotherms and the
isobars about 45°, as depicted schematically in
Fig. 3.7. Note that the isotherms on a skew T & ln p
chart are intentionally “skewed” by about 45° from
their vertical orientation in the pseudoadiabatic
chart (hence the name skew T & ln p chart). From
(3.55), the equation for a dry adiabat (2 constant) is

Hence, on a & ln p versus ln T chart, dry adiabats
would be straight lines. Since &ln p is the ordinate on
the skew T & ln p chart, but the abscissa is not ln T,
dry adiabats on this chart are slightly curved lines
that run from the lower right to the upper left. The
angle between the isotherms and the dry adiabats on
a skew T & ln p chart is approximately 90° (Fig. 3.7).
Therefore, when atmospheric temperature soundings
are plotted on this chart, small differences in slope

&ln p ! (constant) lnT " constant

are more apparent than they are on the pseudoadia-
batic chart.

Exercise 3.5 A parcel of air has a temperature of
&51 °C at the 250-hPa level. What is its potential
temperature? What temperature will the parcel
have if it is brought into the cabin of a jet aircraft
and compressed adiabatically to a cabin pressure of
850 hPa?

Solution: This exercise can be solved using the skew
T & ln p chart. Locate the original state of the air
parcel on the chart at pressure 250 hPa and temper-
ature &51 °C. The label on the dry adiabat that
passes through this point is 60 °C, which is therefore
the potential temperature of the air.

The temperature acquired by the ambient air if it
is compressed adiabatically to a pressure of 850 hPa
can be found from the chart by following the dry adi-
abat that passes through the point located by 250 hPa
and &51 °C down to a pressure of 850 hPa and read-
ing off the temperature at that point. It is 44.5 °C.
(Note that this suggests that ambient air brought into
the cabin of a jet aircraft at cruise altitude has to
be cooled by about 20 °C to provide a comfortable
environment.) ■

3.5 Water Vapor in Air
So far we have indicated the presence of water
vapor in the air through the vapor pressure e that
it exerts, and we have quantified its effect on the
density of air by introducing the concept of virtual
temperature. However, the amount of water vapor
present in a certain quantity of air may be expressed
in many different ways, some of the more important
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Fig. 3.6 The complete pseudoadiabatic chart. Note that
p increases downward and is plotted on a distorted scale
(representing p0.286). Only the blue-shaded area is generally
printed for use in meteorological computations. The sloping
lines, each labeled with a value of the potential temperature 2,
are dry adiabats. As required by the definition of 2, the actual
temperature of the air (given on the abscissa) at 1000 hPa is
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of which are presented later. We must also discuss
what happens when water vapor condenses in air.

3.5.1 Moisture Parameters

a. Mixing ratio and specific humidity

The amount of water vapor in a certain volume of air
may be defined as the ratio of the mass mv of water
vapor to the mass of dry air; this is called the mixing
ratio w. That is

(3.57)

The mixing ratio is usually expressed in grams of water
vapor per kilogram of dry air (but in solving numerical
exercises w must be expressed as a dimensionless num-
ber, e.g., as kg of water vapor per kg of dry air). In the
atmosphere, the magnitude of w typically ranges from
a few grams per kilogram in middle latitudes to values
of around 20 g kg&1 in the tropics. If neither condensa-
tion nor evaporation takes place, the mixing ratio of an
air parcel is constant (i.e., it is a conserved quantity).

The mass of water vapor mv in a unit mass of air
(dry air plus water vapor) is called the specific
humidity q, that is

Because the magnitude of w is only a few percent, it
follows that the numerical values of w and q are
nearly equivalent.

Exercise 3.6 If air contains water vapor with a mix-
ing ratio of 5.5 g kg&1 and the total pressure is 1026.8
hPa, calculate the vapor pressure e.

Solution: The partial pressure exerted by any con-
stituent in a mixture of gases is proportional to the
number of moles of the constituent in the mixture.
Therefore, the pressure e due to water vapor in air is
given by

(3.58)

nv and nd are the number of moles of water vapor
and dry air in the mixture, respectively, Mw is the
molecular weight of water, Md is the apparent molec-

e !
nv

nd " nv
 p !

mv

Mw

md

Md
"

mv

Mw

 p

q # mv

mv " md
!

w
1 " w

w # mv

md

ular weight of dry air, and p is the total pressure of
the moist air. From (3.57) and (3.58) we obtain

(3.59)

where ' ! 0.622 is defined by (3.14). Substituting
p ! 1026.8 hPa and w ! 5.5 % 10&3 kg kg&1 into
(3.59), we obtain e ! 9.0 hPa. ■

Exercise 3.7 Calculate the virtual temperature
correction for moist air at 30 °C that has a mixing
ratio of 20 g kg&1.

Solution: Substituting e!p from (3.59) into (3.16)
and simplifying

Dividing the denominator into the numerator in this
expression and neglecting terms in w2 and higher
orders of w, we obtain

or, substituting ' ! 0.622 and rearranging,

(3.60)

With T ! 303 K and w ! 20 % 10&3 kg kg&1,
Eq. (3.60) gives Tv ! 306.7 K. Therefore, the virtual
temperature correction is Tv & T ! 3.7 degrees (K or
°C). Note that (3.60) is a useful expression for obtain-
ing Tv from T and the moisture parameter w. ■

b. Saturation vapor pressures

Consider a small closed box, the floor of which is cov-
ered with pure water at temperature T. Initially
assume that the air is completely dry. Water will begin
to evaporate and, as it does, the number of water mol-
ecules in the box, and therefore the water vapor pres-
sure, will increase. As the water vapor pressure
increases, so will the rate at which the water mole-
cules condense from the vapor phase back to the liq-
uid phase. If the rate of condensation is less than the
rate of evaporation, the box is said to be unsaturated
at temperature T (Fig. 3.8a). When the water vapor
pressure in the box increases to the point that the rate
of condensation is equal to the rate of evaporation
(Fig. 3.8b), the air is said to be saturated with respect

Tv % T(1 " 0.61w)

Tv & T %
1 & '

'
 wT

Tv ! T
w " '

' (1 " w)

e !
w

w " '
 p
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(a) Unsaturated (b) Saturated
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Fig. 3.8 A box (a) unsaturated and (b) saturated with respect
to a plane surface of pure water at temperature T. Dots repre-
sent water molecules. Lengths of the arrows represent the
relative rates of evaporation and condensation. The saturated
(i.e., equilibrium) vapor pressure over a plane surface of pure
water at temperature T is es as indicated in (b).

26 For further discussion of this and some other common misconceptions related to meteorology see C. F. Bohren’s Clouds in a Glass of
Beer, Wiley and Sons, New York, 1987.

27 As a rough rule of thumb, it is useful to bear in mind that the saturation vapor pressure roughly doubles for a 10 °C increase in
temperature.

to a plane surface of pure water at temperature T, and
the pressure es that is then exerted by the water vapor
is called the saturation vapor pressure over a plane
surface of pure water at temperature T.

Similarly, if the water in Fig. 3.8 were replaced by a
plane surface of pure ice at temperature T and the
rate of condensation of water vapor were equal to
the rate of evaporation of the ice, the pressure esi
exerted by the water vapor would be the saturation
vapor pressure over a plane surface of pure ice at T.
Because, at any given temperature, the rate of evapo-
ration from ice is less than from water, es(T) 0 esi(T).

The rate at which water molecules evaporate
from either water or ice increases with increasing
temperature.27 Consequently, both es and esi increase
with increasing temperature, and their magnitudes

depend only on temperature. The variations with
temperature of es and es & esi are shown in Fig. 3.9,
where it can be seen that the magnitude of es & esi
reaches a peak value at about &12 °C. It follows
that if an ice particle is in water-saturated air it will
grow due to the deposition of water vapor upon it.
In Section 6.5.3 it is shown that this phenomenon

It is common to use phrases such as “the air is sat-
urated with water vapor,” “the air can hold no
more water vapor,” and “warm air can hold more
water vapor than cold air.” These phrases, which
suggest that air absorbs water vapor, rather like a
sponge, are misleading. We have seen that the
total pressure exerted by a mixture of gases is
equal to the sum of the pressures that each gas
would exert if it alone occupied the total volume
of the mixture of gases (Dalton’s law of partial
pressures). Hence, the exchange of water mole-

cules between its liquid and vapor phases is
(essentially) independent of the presence of air.
Strictly speaking, the pressure exerted by water
vapor that is in equilibrium with water at a given
temperature is referred more appropriately to as
equilibrium vapor pressure rather than saturation
vapor pressure at that temperature. However, the
latter term, and the terms “unsaturated air” and
“saturated air,” provide a convenient shorthand
and are so deeply rooted that they will appear in
this book.

3.3 Can Air Be Saturated with Water Vapor?26
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Fig. 3.9 Variations with temperature of the saturation (i.e.,
equilibrium) vapor pressure es over a plane surface of pure
water (red line, scale at left) and the difference between es

and the saturation vapor pressure over a plane surface of ice
esi (blue line, scale at right).
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plays a role in the initial growth of precipitable
particles in some clouds.

c. Saturation mixing ratios

The saturation mixing ratio ws with respect to water
is defined as the ratio of the mass mvs of water vapor
in a given volume of air that is saturated with respect
to a plane surface of pure water to the mass md of
the dry air. That is

(3.61)

Because water vapor and dry air both obey the ideal
gas equation

(3.62)

where #(vs is the partial density of water vapor
required to saturate air with respect to water at
temperature T, #(d is the partial density of the dry
air (see Section 3.1.1), and p is the total pressure.
Combining (3.62) with (3.14), we obtain

For the range of temperatures observed in the
Earth’s atmosphere, p 00 es; therefore

(3.63)

Hence, at a given temperature, the saturation mixing
ratio is inversely proportional to the total pressure.

Because es depends only on temperature, it follows
from (3.63) that ws is a function of temperature and
pressure. Lines of constant saturation mixing ratio are
printed as dashed green lines on the skew T & ln p
chart and are labeled with the value of ws in grams of
water vapor per kilogram of dry air. It is apparent from
the slope of these lines that at constant pressure ws
increases with increasing temperature, and at constant
temperature ws increases with decreasing pressure.

d. Relative humidity; dew point and frost point

The relative humidity (RH) with respect to water is
the ratio (expressed as a percentage) of the actual

ws % 0.622 
es

p

ws ! 0.622 
es

p & es

ws !
#(vs

#(d
!

es

(RvT) + (p & es)
(RdT)

ws
 # mvs

md

mixing ratio w of the air to the saturation mixing
ratio ws with respect to a plane surface of pure water
at the same temperature and pressure. That is

(3.64)

The dew point Td is the temperature to which air
must be cooled at constant pressure for it to become
saturated with respect to a plane surface of pure
water. In other words, the dew point is the tempera-
ture at which the saturation mixing ratio ws with
respect to liquid water becomes equal to the actual
mixing ratio w. It follows that the relative humidity
at temperature T and pressure p is given by

(3.65)

A simple rule of thumb for converting RH to a
dew point depression (T & Td) for moist air (RH 0
50%) is that Td decreases by *1 °C for every 5%
decrease in RH (starting at Td ! dry bulb tempera-
ture (T), where RH ! 100%). For example, if the RH 

is 85%, and the dew point 

depression is T & Td ! 3 °C.

The frost point is defined as the temperature to
which air must be cooled at constant pressure to sat-
urate it with respect to a plane surface of pure ice.
Saturation mixing ratios and relative humidities with
respect to ice may be defined in analogous ways to
their definitions with respect to liquid water. When
the terms mixing ratio and relative humidity are used
without qualification they are with respect to liquid
water.

Exercise 3.8 Air at 1000 hPa and 18 °C has a mix-
ing ratio of 6 g kg&1. What are the relative humidity
and dew point of the air?

Solution: This exercise may be solved using a skew
T & ln p chart. The students should duplicate the
following steps. First locate the point with pressure
1000 hPa and temperature 18 °C. We see from the
chart that the saturation mixing ratio for this state is
*13 g kg&1. Since the air specified in the problem
has a mixing ratio of only 6 g kg&1, it is unsaturated
and its relative humidity is, from (3.64), 100 % 6!13 !
46%. To find the dew point we move from right to

Td ! T & (100 & 85
5 )

RH ! 100 
ws (at temperature Td and pressure p)
ws (at temperature T and pressure p)

RH # 100 
w
ws

% 100 
e
es
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left along the 1000-hPa ordinate until we intercept
the saturation mixing ratio line of magnitude
6 g kg&1; this occurs at a temperature of about 6.5 °C.
Therefore, if the air is cooled at constant pressure,
the water vapor it contains will just saturate the air
with respect to water at a temperature of 6.5 °C.
Therefore, by definition, the dew point of the air
is 6.5 °C. ■

At the Earth’s surface, the pressure typically varies
by only a few percent from place to place and from
time to time. Therefore, the dew point is a good indi-
cator of the moisture content of the air. In warm,
humid weather the dew point is also a convenient
indicator of the level of human discomfort. For
example, most people begin to feel uncomfortable
when the dew point rises above 20 °C, and air with a
dew point above about 22 °C is generally regarded as
extremely humid or “sticky.” Fortunately, dew points
much above this temperature are rarely observed
even in the tropics. In contrast to the dew point, rela-
tive humidity depends as much upon the tempera-
ture of the air as upon its moisture content. On a
sunny day the relative humidity may drop by as
much as 50% from morning to afternoon, just
because of a rise in air temperature. Neither is rela-
tive humidity a good indicator of the level of human
discomfort. For example, a relative humidity of 70%
may feel quite comfortable at a temperature of 20 °C,
but it would cause considerable discomfort to most
people at a temperature of 30 °C.

The highest dew points occur over warm bodies of
water or vegetated surfaces from which water is evap-
orating. In the absence of vertical mixing, the air just
above these surfaces would become saturated with
water vapor, at which point the dew point would be
the same as the temperature of the underlying surface.
Complete saturation is rarely achieved over hot sur-
faces, but dew points in excess of 25 °C are sometimes
observed over the warmest regions of the oceans.

e. Lifting condensation level

The lifting condensation level (LCL) is defined as the
level to which an unsaturated (but moist) parcel of
air can be lifted adiabatically before it becomes satu-
rated with respect to a plane surface of pure water.
During lifting the mixing ratio w and potential tem-
perature 2 of the air parcel remain constant, but the
saturation mixing ratio ws decreases until it becomes
equal to w at the LCL. Therefore, the LCL is located

at the intersection of the potential temperature line
passing through the temperature T and pressure p of
the air parcel, and the ws line that passes through the
pressure p and dew point Td of the parcel (Fig. 3.10).
Since the dew point and LCL are related in the man-
ner indicated in Fig. 3.10, knowledge of either one is
sufficient to determine the other. Similarly, a knowl-
edge of T, p, and any one moisture parameter is suffi-
cient to determine all the other moisture parameters
we have defined.

f. Wet-bulb temperature

The wet-bulb temperature is measured with a ther-
mometer, the glass bulb of which is covered with a
moist cloth over which ambient air is drawn. The
heat required to evaporate water from the moist
cloth to saturate the ambient air is supplied by the
air as it comes into contact with the cloth. When the
difference between the temperatures of the bulb and
the ambient air is steady and sufficient to supply the
heat needed to evaporate the water, the thermome-
ter will read a steady temperature, which is called the
wet-bulb temperature. If a raindrop falls through a
layer of air that has a constant wet-bulb temperature,
the raindrop will eventually reach a temperature
equal to the wet-bulb temperature of the air.

The definition of wet-bulb temperature and dew
point both involve cooling a hypothetical air parcel
to saturation, but there is a distinct difference. If
the unsaturated air approaching the wet bulb has a
mixing ratio w, the dew point Td is the temperature
to which the air must be cooled at constant pressure
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Fig. 3.10 The lifting condensation level of a parcel of air at
A, with pressure p, temperature T, and dew point Td, is at C
on the skew T & ln p chart.
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to become saturated. The air that leaves the wet
bulb has a mixing ratio w( that saturates it at tem-
perature Tw. If the air approaching the wet bulb is
unsaturated, w( is greater than w; therefore, Td 5
Tw 5 T, where the equality signs apply only to air
saturated with respect to a plane surface of pure
water. Usually Tw is close to the arithmetic mean of
T and Td.

3.5.2 Latent Heats

If heat is supplied to a system under certain condi-
tions it may produce a change in phase rather than
a change in temperature. In this case, the increase in
internal energy is associated entirely with a change
in molecular configurations in the presence of inter-
molecular forces rather than an increase in the
kinetic energy of the molecules (and therefore the
temperature of the system). For example, if heat is
supplied to ice at 1 atm and 0 °C, the temperature
remains constant until all of the ice has melted. The
latent heat of melting (Lm) is defined as the heat
that has to be given to a unit mass of a material to
convert it from the solid to the liquid phase without
a change in temperature. The temperature at which
this phase change occurs is called the melting point.
At 1 atm and 0 °C the latent heat of melting of the
water substance is 3.34 % 105 J kg&1. The latent heat
of freezing has the same numerical value as the
latent heat of melting, but heat is released as a
result of the change in phase from liquid to solid.

Similarly, the latent heat of vaporization or evapo-
ration (Lv) is the heat that has to be given to a unit
mass of material to convert it from the liquid to the
vapor phase without a change in temperature. For
the water substance at 1 atm and 100 °C (the boiling
point of water at 1 atm), the latent heat of vaporiza-
tion is 2.25 % 106 J kg&1. The latent heat of condensa-
tion has the same value as the latent heat of
vaporization, but heat is released in the change in
phase from vapor to liquid.28

As will be shown in Section 3.7.3, the melting point
(and boiling point) of a material depends on pressure.

3.5.3 Saturated Adiabatic and
Pseudoadiabatic Processes

When an air parcel rises in the atmosphere its tem-
perature decreases with altitude at the dry adiabatic
lapse rate (see Section 3.4.2) until it becomes satu-
rated with water vapor. Further lifting results in the
condensation of liquid water (or the deposition of
ice), which releases latent heat. Consequently, the rate
of decrease in the temperature of the rising parcel is
reduced. If all of the condensation products remain in
the rising parcel, the process may still be considered
to be adiabatic (and reversible), even though latent
heat is released in the system, provided that heat does
not pass through the boundaries of the parcel. The air
parcel is then said to undergo a saturated adiabatic
process. However, if all of the condensation products
immediately fall out of the air parcel, the process is
irreversible, and not strictly adiabatic, because the
condensation products carry some heat. The air parcel
is then said to undergo a pseudoadiabatic process. As
the reader is invited to verify in Exercise 3.44, the
amount of heat carried by condensation products is
small compared to that carried by the air itself.
Therefore, the saturated-adiabatic and the pseudoadi-
abatic lapse rates are virtually identical.

3.5.4 The Saturated Adiabatic Lapse Rate

In contrast to the dry adiabatic lapse rate 1d, which is
constant, the numerical value of the saturated adia-
batic lapse rate 1s varies with pressure and tempera-
ture. (The reader is invited to derive an expression
for 1s in Exercise 3.50; see the book Web site.)
Because water vapor condenses when a saturated
air parcel rises, it follows that 1s . 1d. Actual
values of 1s range from about 4 K km&1 near the
ground in warm, humid air masses to typical values
of 6&7 K km&1 in the middle troposphere. For typical
temperatures near the tropopause, 1s is only slightly
less than 1d because the saturation vapor pressure of
the air is so small that the effect of condensation is
negligible.29 Lines that show the rate of decrease in

28 Normally, when heat is given to a substance, the temperature of the substance increases. This is called sensible heat. However, when
heat is given to a substance that is melting or boiling, the temperature of the substance does not change until all of the substance is melted
or vaporized. In this case, the heat appears to be latent (i.e., hidden). Hence the terms latent heat of melting and latent heat of vaporization.

29 William Thomson (later Lord Kelvin) was the first (in 1862) to derive quantitative estimates of the dry and saturated adiabatic lapse
rates based on theoretical arguments. For an interesting account of the contributions of other 19th-century scientists to the realization of
the importance of latent heat in the atmosphere, see W. E. K. Middleton, A History of the Theories of Rain, Franklin Watts, Inc., New York,
1965, Chapter 8.
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temperature with height of a parcel of air that is ris-
ing or sinking in the atmosphere under saturated adi-
abatic (or pseudoadiabatic) conditions are called
saturated adiabats (or pseudoadiabats). On the skew
T & ln p chart these are the curved green lines that
diverge upward and tend to become parallel to the
dry adiabats.

Exercise 3.9 A parcel of air with an initial tempera-
ture of 15 °C and dew point 2 °C is lifted adiabati-
cally from the 1000-hPa level. Determine its LCL
and temperature at that level. If the air parcel is
lifted a further 200 hPa above its LCL, what is its
final temperature and how much liquid water is con-
densed during this rise?

Solution: The student should duplicate the following
steps on the skew T & ln p chart (see the book Web
site). First locate the initial state of the air on the
chart at the intersection of the 15 °C isotherm with the
1000-hPa isobar. Because the dew point of the air is
2 °C, the magnitude of the saturation mixing ratio line
that passes through the 1000-hPa pressure level at 2 °C
is the actual mixing ratio of the air at 15 °C and
1000 hPa. From the chart this is found to be about
4.4 g kg&1. Because the saturation mixing ratio at
1000 hPa and 15 °C is about 10.7 g kg&1, the air is
initially unsaturated. Therefore, when it is lifted it will
follow a dry adiabat (i.e., a line of constant potential
temperature) until it intercepts the saturation mixing
ratio line of magnitude 4.4 g kg&1. Following upward
along the dry adiabat (2 ! 288 K) that passes through
1000 hPa and 15 °C isotherm, the saturation mixing
ratio line of 4.4 g kg&1 is intercepted at about the
820-hPa level. This is the LCL of the air parcel. The
temperature of the air at this point is about &0.7 °C.
For lifting above this level the air parcel will follow a
saturated adiabat. Following the saturated adiabat that
passes through 820 hPa and &0.7 °C up to the 620-hPa
level, the final temperature of the air is found to be
about &15 °C. The saturation mixing ratio at 620 hPa
and &15 °C is *1.9 g kg&1. Therefore, about *4.4 &
1.9 ! 2.5 g of water must have condensed out of each
kilogram of air during the rise from 820 to 620 hPa. ■

3.5.5 Equivalent Potential Temperature and
Wet-Bulb Potential Temperature

We will now derive an equation that describes how
temperature varies with pressure under conditions of

saturated adiabatic ascent or descent. Substituting
(3.3) into (3.46) gives

(3.66)

From (3.54) the potential temperature 2 is given by

or, differentiating,

(3.67)

Combining (3.66) and (3.67) and substituting dq !
&Lv dws, we obtain

(3.68)

In Exercise 3.52 we show that

(3.69)

From (3.68) and (3.69)

This last expression can be integrated to give

(3.70)

We will define the constant of integration in (3.70)
by requiring that at low temperatures, as 

. Then

or

(3.71)

The quantity 2e given by (3.71) is called the equiva-
lent potential temperature. It can be seen that 2e is the

2e % 2 exp (Lvws

cpT )

&
Lvws

cpT
% ln ( 2

2e
)

2 : 2e

ws!T : 0,

&
Lvws

cpT
% ln2 " constant

&d (Lvws

cpT ) %
d2

2

Lv

cpT
  dws % d (Lvws

cpT )

&
Lv

cpT
 dws !

d2

2

cp 
d2

2
! cp 

dT
T

& R 
dp
p

ln2 ! lnT &
R
cp

 ln  p " constant

dq
T

! cp 
dT
T

& R 
dp
p
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potential temperature 2 of a parcel of air when all
the water vapor has condensed so that its saturation
mixing ratio ws is zero. Hence, recalling the definition
of 2, the equivalent potential temperature of an air
parcel may be found as follows. The air is expanded
(i.e., lifted) pseudoadiabatically until all the vapor
has condensed, released its latent heat, and fallen
out. The air is then compressed dry adiabatically to
the standard pressure of 1000 hPa, at which point it
will attain the temperature 2e. (If the air is initially
unsaturated, ws and T are the saturation mixing ratio
and temperature at the point where the air first
becomes saturated after being lifted dry adiabati-
cally.) We have seen in Section 3.4.3 that potential
temperature is a conserved quantity for adiabatic
transformations. The equivalent potential tempera-
ture is conserved during both dry and saturated adia-
batic processes.

If the line of constant equivalent potential temper-
ature (i.e., the pseudoadiabat) that passes through
the wet-bulb temperature of a parcel of air is traced
back on a skew T & ln p chart to the point where it
intersects the 1000-hPa isobar, the temperature at
this intersection is called the wet-bulb potential tem-
perature 2w of the air parcel. Like the equivalent
potential temperature, the wet-bulb potential tem-
perature is conserved during both dry and saturated
adiabatic processes. On skew T & ln p charts, pseudo-
adiabats are labeled (along the 200-hPa isobar) with
the wet-bulb potential temperature 2w (in °C) and
the equivalent potential temperature 2e (in K) of air
that rises or sinks along that pseudoadiabat. Both 2w
and 2e provide equivalent information and are valu-
able as tracers of air parcels.

When height, rather than pressure, is used as the
independent variable, the conserved quantity during
adiabatic or pseudoadiabatic ascent or descent with
water undergoing transitions between liquid and
vapor phases is the moist static energy (MSE)30

(3.72)

where T is the temperature of the air parcel, , is the
geopotential, and qv is the specific humidity (nearly
the same as w). The first term on the right side of

MSE ! cpT " , " Lv q

(3.72) is the enthalpy per unit mass of air. The second
term is the potential energy, and the third term is the
latent heat content. The first two terms, which also
appear in (3.51), are the dry static energy. When air is
lifted dry adiabatically, enthalpy is converted into
potential energy and the latent heat content remains
unchanged. In saturated adiabatic ascent, energy is
exchanged among all three terms on the right side of
(3.72): potential energy increases, while the enthalpy
and latent heat content both decrease. However, the
sum of the three terms remains constant.

3.5.6 Normand’s Rule

Many of the relationships discussed in this section
are embodied in the following theorem, known as
Normand’s31 rule, which is extremely helpful in many
computations involving the skew T & ln p chart.
Normand’s rule states that on a skew T & ln p chart
the lifting condensation level of an air parcel is
located at the intersection of the potential tempera-
ture line that passes through the point located by the
temperature and pressure of the air parcel, the equiv-
alent potential temperature line (i.e., the pseudoadia-
bat) that passes through the point located by the
wet-bulb temperature and pressure of the air parcel,
and the saturation mixing ratio line that passes
through the point determined by the dew point and
pressure of the air. This rule is illustrated in Fig. 3.11
for the case of an air parcel with temperature T, pres-
sure p, dew point Td, and wet-bulb temperature Tw.
It can be seen that if T, p, and Td are known, Tw may
be readily determined using Normand’s rule. Also, by
extrapolating the 2e line that passes through Tw to
the 1000-hPa level, the wet-bulb potential tempera-
ture 2w may be found (Fig. 3.11).

3.5.7 Net Effects of Ascent Followed by
Descent

When a parcel of air is lifted above its LCL so that
condensation occurs and if the products of the con-
densation fall out as precipitation, the latent heat
gained by the air during this process will be retained
by the air if the parcel returns to its original level.

30 The word static derives from the fact that the kinetic energy associated with macroscale fluid motions is not included. The reader is
invited to show that the kinetic energy per unit mass is much smaller than the other terms on the right side of (3.72), provided that the
wind speed is small in comparison to the speed of sound.

31 Sir Charles William Blyth Normand (1889–1982) British meteorologist. Director-General of Indian Meteorological Service,
1927–1944. A founding member of the National Science Academy of India. Improved methods for measuring atmospheric ozone.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 86



3.5 Water Vapor in Air 87

The effects of the saturated ascent coupled with the
adiabatic descent are:

i. net increases in the temperature and potential
temperature of the parcel;

ii. a decrease in moisture content (as indicated by
changes in the mixing ratio, relative humidity,
dew point, or wet-bulb temperature); and,

iii. no change in the equivalent potential
temperature or wet-bulb potential temperature,
which are conserved quantities for air parcels
undergoing both dry and saturated processes.

The following exercise illustrates these points.

Exercise 3.10 An air parcel at 950 hPa has a tem-
perature of 14 °C and a mixing ratio of 8 g kg&1.
What is the wet-bulb potential temperature of the
air? The air parcel is lifted to the 700-hPa level by
passing over a mountain, and 70% of the water
vapor that is condensed out by the ascent is
removed by precipitation. Determine the tempera-
ture, potential temperature, mixing ratio, and wet-
bulb potential temperature of the air parcel after it
has descended to the 950-hPa level on the other side
of the mountain.

Solution: On a skew T & ln p chart (see the book
Web site), locate the initial state of the air at 950 hPa
and 14 °C. The saturation mixing ratio for an air parcel
with temperature and pressure is found from the chart
to be 10.6 g kg&1. Therefore, because the air has a
mixing ratio of only 8 g kg&1, it is unsaturated.The wet-
bulb potential temperature (2w) can be determined
using the method indicated schematically in Fig. 3.11,
which is as follows. Trace the constant potential tem-
perature line that passes through the initial state of the
air parcel up to the point where it intersects the satura-
tion mixing ratio line with value 8 g kg&1. This occurs
at a pressure of about 890 hPa, which is the LCL of the
air parcel. Now follow the equivalent potential temper-
ature line that passes through this point back down to
the 1000-hPa level and read off the temperature on the
abscissa—it is 14 °C. This is in the wet-bulb potential
temperature of the air.

When the air is lifted over the mountain, its temper-
ature and pressure up to the LCL at 890 hPa are given
by points on the potential temperature line that passes
through the point 950 hPa and 14 °C. With further
ascent of the air parcel to the 700-hPa level, the air fol-
lows the saturated adiabat that passes through the
LCL. This saturated adiabat intersects the 700-hPa
level at a point where the saturation mixing ratio is
4.7 g kg&1. Therefore, 8 & 4.7 ! 3.3 g kg&1 of water
vapor has to condense out between the LCL and the
700-hPa level, and 70% of this, or 2.3 g kg&1, is precipi-
tated out. Therefore, at the 700-hPa level 1 g kg&1 of
liquid water remains in the air. The air parcel descends
on the other side of the mountain at the saturated adi-
abatic lapse rate until it evaporates all of its liquid
water, at which point the saturation mixing ratio will
have risen to 4.7 " 1 ! 5.7 g kg&1. The air parcel is
now at a pressure of 760 hPa and a temperature of
1.8 °C. Thereafter, the air parcel descends along a dry
adiabat to the 950-hPa level, where its temperature is
20 °C and the mixing ratio is still 5.7 g kg&1. If the
method indicated in Fig. 3.11 is applied again, the wet-
bulb potential temperature of the air parcel will be
found to be unchanged at 14 °C. (The heating of air
during its passage over a mountain, 6 °C in this exam-
ple, is responsible for the remarkable warmth of Föhn
or Chinook winds, which often blow downward along
the lee side of mountain ranges.32) ■
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Fig. 3.11 Illustration of Normand’s rule on the skew T & ln p
chart. The orange lines are isotherms. The method for deter-
mining the wet-bulb temperature (Tw) and the wet-bulb
potential temperature (2w) of an air parcel with temperature T
and dew point Td at pressure p is illustrated. LCL denotes the
lifting condensation level of this air parcel.

32 The person who first explained the Föhn wind in this way appears to have been J. von Hann33 in his classic book Lehrbuch der
Meteorologie, Willibald Keller, Leipzig, 1901.

33 Julius F. von Hann (1839–1921) Austrian meteorologist. Introduced thermodynamic principles into meteorology. Developed theories
for mountain and valley winds. Published the first comprehensive treatise on climatology (1883).
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3.6 Static Stability
3.6.1 Unsaturated Air

Consider a layer of the atmosphere in which the
actual temperature lapse rate 1 (as measured, for
example, by a radiosonde) is less than the dry adia-
batic lapse rate 1d (Fig. 3.12a). If a parcel of unsat-
urated air originally located at level O is raised to
the height defined by points A and B, its tempera-
ture will fall to TA, which is lower than the ambient
temperature TB at this level. Because the parcel
immediately adjusts to the pressure of the ambient
air, it is clear from the ideal gas equation that the
colder parcel of air must be denser than the
warmer ambient air. Therefore, if left to itself,
the parcel will tend to return to its original level. If
the parcel is displaced downward from O it
becomes warmer than the ambient air and, if left to
itself, the parcel will tend to rise back to its original
level. In both cases, the parcel of air encounters a
restoring force after being displaced, which
inhibits vertical mixing. Thus, the condition 1 . 1d
corresponds to a stable stratification (or positive
static stability) for unsaturated air parcels. In gen-
eral, the larger the difference 1d & 1, the greater
the restoring force for a given displacement and the
greater the static stability.34

Exercise 3.11 An unsaturated parcel of air has den-
sity #( and temperature T(, and the density and tem-
perature of the ambient air are # and T. Derive an
expression for the upward acceleration of the air par-
cel in terms of T, T(, and !.

Solution: The situation is depicted in Fig. 3.13. If
we consider a unit volume of the air parcel, its mass
is #(. Therefore, the downward force acting on unit
volume of the parcel is #(!. From the Archimedes35

principle we know that the upward force acting on
the parcel is equal in magnitude to the gravitational
force that acts on the ambient air that is displaced by
the air parcel. Because a unit volume of ambient air
of density # is displaced by the air parcel, the magni-
tude of the upward force acting on the air parcel is
#!. Therefore, the net upward force (F) acting on a
unit volume of the parcel is

F ! (# & #() !

34 A more general method for determing static stability is given in Section 9.3.4.
35 Archimedes (287–212 B.C.) The greatest of Greek scientists. He invented engines of war and the water screw and he derived the

principle of buoyancy named after him. When Syracuse was sacked by Rome, a soldier came upon the aged Archimedes absorbed in study-
ing figures he had traced in the sand: “Do not disturb my circles” said Archimedes, but was killed instantly by the soldier. Unfortunately,
right does not always conquer over might.
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Fig. 3.12 Conditions for (a) positive static stability (1 . 1d)
and (b) negative static instability (1 0 1d) for the displace-
ment of unsaturated air parcels.

Fig. 3.13 The box represents an air parcel of unit volume
with its center of mass at height z above the Earth’s surface.
The density and temperature of the air parcel are #( and T(,
respectively, and the density and temperature of the ambient
air are # and T. The vertical forces acting on the air parcel are
indicated by the thicker arrows.
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3.6 Static Stability 89

Because the mass of a unit volume of the air parcel is
#(, the upward acceleration of the parcel is

where z is the height of the air parcel. The pressure of
the air parcel is the same as that of the ambient air,
since they are at the same height in the atmosphere.
Therefore, from the gas equation in the form of (3.2),
the densities of the air parcel and the ambient air are
inversely proportional to their temperatures. Hence,

or

(3.73)
■

Strictly speaking, virtual temperature Tv should be
used in place of T in all expressions relating to static
stability. However, the virtual temperature correction
is usually neglected except in certain calculations
relating to the boundary layer.

Exercise 3.12 The air parcel in Fig. 3.12a is dis-
placed upward from its equilibrium level at z( ! 0 by
a distance z( to a new level where the ambient tem-
perature is T. The air parcel is then released. Derive
an expression that describes the subsequent vertical
displacement of the air parcel as a function of time in
terms of T, the lapse rate of the ambient air (1), and
the dry adiabatic lapse rate (1d).

Solution: Let z ! z0 be the equilibrium level of the
air parcel and z( ! z & z0 be the vertical dispalcement
of the air parcel from its equilibrium level. Let T0 be
the environmental air temperature at z ! z0. If the air
parcel is lifted dry adiabatically through a distance z(
from its equilibrium level, its temperature will be

d2z
dt2 ! ! (T( & T

T )

d2z
dt2 !

1
T

&
1

T(

1
T(

 !

d2z
dt2 !

F
#(

! (# & #(

#( ) !

Therefore

Substituting this last expression into (3.73), we obtain

which may be written in the form

(3.74)

where

(3.75)

N is referred to as the Brunt36–Väisälä37 frequency.
Equation (3.74) is a second order ordinary differential
equation. If the layer in question is stably stratified
(that is to say, if 1d 0 1), then we can be assured that
N is real, N2 is positive, and the solution of (3.74) is

Making use of the conditions at the point of maximum
displacement at time t ! 0, namely that z( ! z((0) and
dz(!dt ! 0 at t ! 0, it follows that

That is to say, the parcel executes a buoyancy oscillation
about its equilibrium level z with amplitude equal to its
initial displacement z((0), and frequency N (in units of
radians per second). The Brunt–Väisälä frequency is
thus a measure of the static stability: the higher the fre-
quency, the greater the ambient stability. ■

Air parcels undergo buoyancy oscillations in asso-
ciation with gravity waves, a widespread phenome-
non in planetary atmospheres, as illustrated in
Fig. 3.14. Gravity waves may be excited by flow over

z((t) ! z((0) cos Nt

z( ! A cos Nt " B sin Nt

N ! &!
T

 (1d & 1)'1/2

d2z(

dt2 " N2z( ! 0

d2z(

dt2 ! &
!
T

 (1d & 1) z(

T( & T ! &(1d & 1) z(

T( ! T0 & (1d) z(

36 Sir David Brunt (1886–1995) English meteorologist. First full-time professor of meteorology at Imperial College
(1934–1952). His textbook Physical and Dynamical Meteorology, published in the 1930s, was one of the first modern unifying accounts
of meteorology.

37 Vilho Väisälä (1899–1969) Finnish meteorologist. Developed a number of meteorological instruments, including a version of the
radiosonde in which readings of temperature, pressure, and moisture are telemetered in terms of radio frequencies. The modern counter-
part of this instrument is one of Finland’s successful exports.
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90 Atmospheric Thermodynamics

mountainous terrain, as shown in the top photograph
in Fig. 3.14 or by an intense local disturbance, as
shown in the bottom photograph. The following exer-
cise illustrates how buoyancy oscillations can be
excited by flow over a mountain range.

Exercise 3.13 A layer of unsaturated air flows over
mountainous terrain in which the ridges are 10 km
apart in the direction of the flow. The lapse rate is 5 °C
km&1 and the temperature is 20 °C. For what value of
the wind speed U will the period of the orographic
(i.e., terrain-induced) forcing match the period of a
buoyancy oscillation?

Solution: For the period 6 of the orographic forcing
to match the period of the buoyancy oscillation, it is
required that

where L is the spacing between the ridges. Hence,
from this last expression and (3.75),

or, in SI units,

■

Layers of air with negative lapse rates (i.e., tempera-
tures increasing with height) are called inversions. It
is clear from the aforementioned discussion that
these layers are marked by very strong static stabil-
ity. A low-level inversion can act as a “lid” that traps
pollution-laden air beneath it (Fig. 3.15). The layered
structure of the stratosphere derives from the fact
that it represents an inversion in the vertical temper-
ature profile.

If 1 0 1d (Fig. 3.12b), a parcel of unsaturated air
displaced upward from O will arrive at A with a tem-
perature greater than that of its environment.
Therefore, it will be less dense than the ambient air
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Fig. 3.14 Gravity waves, as revealed by cloud patterns.
The upper photograph, based on NOAA GOES 8 visible
satellite imagery, shows a wave pattern in west to east
(right to left) airflow over the north–south-oriented moun-
tain ranges of the Appalachians in the northeastern United
States. The waves are transverse to the flow and their hori-
zontal wavelength is *20 km. The atmospheric wave pat-
tern is more regular and widespread than the undulations
in the terrain. The bottom photograph, based on imagery
from NASA’s multiangle imaging spectro-radiometer
(MISR), shows an even more regular wave pattern in a thin
layer of clouds over the Indian Ocean.

Fig. 3.15 Looking down onto widespread haze over south-
ern Africa during the biomass-burning season. The haze is
confined below a temperature inversion. Above the inversion,
the air is remarkably clean and the visibility is excellent.
(Photo: P. V. Hobbs.)
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3.6 Static Stability 91

and, if left to itself, will continue to rise. Similarly, if
the parcel is displaced downward it will be cooler
than the ambient air, and it will continue to sink if
left to itself. Such unstable situations generally do not
persist in the free atmosphere, because the instability
is eliminated by strong vertical mixing as fast as it
forms. The only exception is in the layer just above
the ground under conditions of very strong heating
from below. ■

Exercise 3.14 Show that if the potential tempera-
ture 2 increases with increasing altitude the atmos-
phere is stable with respect to the displacement of
unsaturated air parcels.

Solution: Combining (3.1), (3.18), and (3.67), we
obtain for a unit mass of air

Letting d2 ! (*2!*z)dz and dT ! (*T!*z)dz and
dividing through by cpTdz yields

(3.76)

Noting that &dT!dz is the actual lapse rate 1 of the
air and the dry adiabatic lapse rate 1d is !!cp (3.76)
may be written as

(3.77)

However, it has been shown earlier that when 1 . 1d
the air is characterized by positive static stability. It
follows that under these same conditions *2!*z must
be positive; that is, the potential temperature must
increase with height. ■

3.6.2 Saturated Air

If a parcel of air is saturated, its temperature will
decrease with height at the saturated adiabatic lapse
rate 1s. It follows from arguments similar to those
given in Section 3.6.1 that if 1 is the actual lapse rate
of temperature in the atmosphere, saturated air
parcels will be stable, neutral, or unstable with
respect to vertical displacements, depending on
whether 1 . 1s, 1 ! 1s, or 1 0 1s, respectively. When

1
2
 
*2

*z
!

1
T

 (1d & 1)

1
2
 
*2

*z
!

1
T

 (*T
*z

"
!
cp
)

cpT 
d2

2
! cp dT " !dz

an environmental temperature sounding is plotted
on a skew T & ln p chart the distinctions between 1,
1d, and 1s are clearly discernible (see Exercise 3.53).

3.6.3 Conditional and Convective Instability

If the actual lapse rate 1 of the atmosphere lies
between the saturated adiabatic lapse rate 1s and the
dry adiabatic lapse rate 1d, a parcel of air that is
lifted sufficiently far above its equilibrium level will
become warmer than the ambient air. This situation
is illustrated in Fig. 3.16, where an air parcel lifted
from its equilibrium level at O cools dry adiabatically
until it reaches its lifting condensation level at A. At
this level the air parcel is colder than the ambient air.
Further lifting produces cooling at the moist adia-
batic lapse rate so the temperature of the parcel of
air follows the moist adiabat ABC. If the air parcel is
sufficiently moist, the moist adiabat through A will
cross the ambient temperature sounding; the point of
intersection is shown as B in Fig. 3.16. Up to this
point the parcel was colder and denser than the
ambient air, and an expenditure of energy was
required to lift it. If forced lifting had stopped prior
to this point, the parcel would have returned to its
equilibrium level at point O. However, once above
point B, the parcel develops a positive buoyancy that
carries it upward even in the absence of further
forced lifting. For this reason, B is referred to as the
level of free convection (LFC). The level of free con-
vection depends on the amount of moisture in the
rising parcel of air, as well as the magnitude of the
lapse rate 1.

From the aforementioned discussion it is clear that
for a layer in which 1s . 1 . 1d, vigorous convective
overturning will occur if forced vertical motions are
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Fig. 3.16 Conditions for conditional instability (1s . 1 .

1d). 1s and 1d are the saturated and dry adiabatic lapse rates,
and 1 is the lapse rate of temperature of the ambient air. LCL
and LFC denote the lifting condensation level and the level of free
convection, respectively.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 91



92 Atmospheric Thermodynamics

Sections 3.6.1 and 3.6.2 discussed the conditions
for parcels of unsaturated air and saturated air to
be stable, unstable, or neutral when displaced ver-
tically in the atmosphere. Under stable conditions,
if an air parcel is displaced either upward or
downward and is then left to itself (i.e., the force
causing the original displacement is removed), the
parcel will return to its original position. An anal-
ogous situation is shown in Fig. 3.17a where a ball
is originally located at the lowest point in a valley.
If the ball is displaced in any direction and is then
left to itself, it will return to its original location at
the base of the valley.

Under unstable conditions in the atmosphere, an
air parcel that is displaced either upward or down-
ward, and then left to itself, will continue to move
upward or downward, respectively. An analog is
shown in Fig. 3.17b, where a ball is initially on top
of a hill. If the ball is displaced in any direction,
and is then left to itself, it will roll down the hill.

If an air parcel is displaced in a neutral atmos-
phere, and then left to itself, it will remain in the
displaced location. An analog of this condition is
a ball on a flat surface (Fig. 3.17c). If the ball is
displaced, and then left to itself, it will not move.

If an air parcel is conditionally unstable, it can
be lifted up to a certain height and, if left to
itself, it will return to its original location.
However, if the air parcel is lifted beyond a cer-
tain height (i.e., the level of free convection), and
is then left to itself, it will continue rising
(Section 3.6.3). An analog of this situation is
shown in Fig. 3.17d, where a displacement of a
ball to a point A, which lies to the left of the
hillock, will result in the ball rolling back to its
original position. However, if the displacement
takes the ball to a point B on the other side of
the hillock, the ball will not return to its original
position but will roll down the right-hand side of
the hillock.

It should be noted that in the analogs shown
in Fig. 3.17 the only force acting on the ball after
it is displaced is that due to gravity, which is
always downward. In contrast, an air parcel is
acted on by both a gravitational force and a
buoyancy force. The gravitational force is always
downward. The buoyancy force may be either
upward or downward, depending on whether the
air parcel is less dense or more dense than the
ambient air.

3.4 Analogs for Static Stability, Instability, Neutral Stability, and Conditional Instability

(a) (b) (c)

B
A

A
B

A B
A B

(d)

Fig. 3.17 Analogs for (a) stable, (b) unstable, (c) neutral, and (d) conditional instability. The red circle is the original
position of the ball, and the white circles are displaced positions. Arrows indicate the direction the ball will move from a
displaced position if the force that produced the displacement is removed.

large enough to lift air parcels beyond their level of
free convection. Such an atmosphere is said to be
conditionally unstable with respect to convection. If
vertical motions are weak, this type of stratification
can be maintained indefinitely.

The potential for instability of air parcels is also
related to the vertical stratification of water vapor. In
the profiles shown in Fig. 3.18, the dew point
decreases rapidly with height within the inversion
layer AB that marks the top of a moist layer. Now,

suppose that this layer is lifted. An air parcel at A
will reach its LCL quickly, and beyond that point it
will cool moist adiabatically. In contrast, an air parcel
starting at point B will cool dry adiabatically through
a deep layer before it reaches its LCL. Therefore, as
the inversion layer is lifted, the top part of it cools
much more rapidly than the bottom part, and the
lapse rate quickly becomes destabilized. Sufficient
lifting may cause the layer to become conditionally
unstable, even if the entire sounding is absolutely
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stable to begin with. It may be shown that the criterion
for this so-called convective (or potential) instability
is that *2e!*z be negative (i.e., 2e decrease with
increasing height) within the layer.

Throughout large areas of the tropics, 2e decreases
markedly with height from the mixed layer to the
much drier air above. Yet deep convection breaks out
only within a few percent of the area where there is
sufficient lifting to release the instability.

3.7 The Second Law of
Thermodynamics and Entropy
The first law of thermodynamics (Section 3.3) is a
statement of the principle of conservation of energy.
The second law of thermodynamics, which was
deduced in various forms by Carnot,38 Clausius,39

and Lord Kelvin, is concerned with the maximum
fraction of a quantity of heat that can be converted
into work. The fact that for any given system there is
a theoretical limit to this conversion was first clearly
demonstrated by Carnot, who also introduced the
important concepts of cyclic and reversible processes.

3.7.1 The Carnot Cycle

A cyclic process is a series of operations by which
the state of a substance (called the working sub-
stance) changes but the substance is finally returned
to its original state in all respects. If the volume
of the working substance changes, the working sub-

stance may do external work, or work may be done
on the working substance, during a cyclic process.
Since the initial and final states of the working sub-
stance are the same in a cyclic process, and internal
energy is a function of state, the internal energy of
the working substance is unchanged in a cyclic
process. Therefore, from (3.33), the net heat
absorbed by the working substance is equal to the
external work that it does in the cycle. A working
substance is said to undergo a reversible transforma-
tion if each state of the system is in equilibrium so
that a reversal in the direction of an infinitesimal
change returns the working substance and the envi-
ronment to their original states. A heat engine (or
engine for short) is a device that does work through
the agency of heat.

If during one cycle of an engine a quantity of heat
Q1 is absorbed and heat Q2 is rejected, the amount of
work done by the engine is Q1 & Q2 and its efficiency
8 is defined as

(3.78)

Carnot was concerned with the important practical
problem of the efficiency with which heat engines
can do useful mechanical work. He envisaged an
ideal heat engine (Fig. 3.19) consisting of a working
substance contained in a cylinder (Y) with insulating
walls and a conducting base (B) that is fitted with an
insulated, frictionless piston (P) to which a variable
force can be applied, a nonconducting stand (S) on
which the cylinder may be placed to insulate its base,
an infinite warm reservoir of heat (H) at constant
temperature T1, and an infinite cold reservoir for
heat (C) at constant temperature T2 (where T1 0 T2).
Heat can be supplied from the warm reservoir to the
working substance contained in the cylinder, and
heat can be extracted from the working substance by
the cold reservoir. As the working substance expands
(or contracts), the piston moves outward (or inward)
and external work is done by (or on) the working
substance.

!
Q1 & Q2

Q1

8 !
Work done by the engine

Heat absorbed by the working substance

B
A

Td T
H

ei
gh

t

Temperature

Fig. 3.18 Conditions for convective instability. T and Td are
the temperature and dew point of the air, respectively. The
blue-shaded region is a dry inversion layer.

38 Nicholas Leonard Sadi Carnot (1796–1832) Born in Luxenbourg. Admitted to the École Polytechnique, Paris, at age 16. Became a
captain in the Corps of Engineers. Founded the science of thermodynamics.

39 Rudolf Clausius (1822–1888) German physicist. Contributed to the sciences of thermodynamics, optics, and electricity.
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Carnot’s cycle consists of taking the working sub-
stance in the cylinder through the following four
operations that together constitute a reversible, cyclic
transformation:

i. The substance starts with temperature T2 at a
condition represented by A on the p–V diagram
in Fig. 3.20. The cylinder is placed on the stand
S and the working substance is compressed by
increasing the downward force applied to the
piston. Because heat can neither enter nor
leave the working substance in the cylinder
when it is on the stand, the working substance
undergoes an adiabatic compression to the
state represented by B in Fig. 3.20 in which its
temperature has risen to T1.

ii. The cylinder is now placed on the warm
reservoir H, from which it extracts a quantity of
heat Q1. During this process the working
substance expands isothermally at temperature
T1 to point C in Fig. 3.20. During this process
the working substance does work by expanding
against the force applied to the piston.

iii. The cylinder is returned to the nonconducting
stand and the working substance undergoes an
adiabatic expansion along book web site in
Fig. 3.20 until its temperature falls to T2.
Again the working substance does work
against the force applied to the piston.

iv. Finally, the cylinder is placed on the cold
reservoir and, by increasing the force applied
to the piston, the working substance is
compressed isothermally along DA back to its
original state A. In this transformation the
working substance gives up a quantity of heat
Q2 to the cold reservoir.

It follows from (3.36) that the net amount of work
done by the working substance during the Carnot
cycle is equal to the area contained within the figure
ABCD in Fig. 3.20. Also, because the working sub-
stance is returned to its original state, the net work
done is equal to Q1 & Q2 and the efficiency of the
engine is given by (3.78). In this cyclic operation the
engine has done work by transferring a certain quan-
tity of heat from a warmer (H) to a cooler (C) body.
One way of stating the second law of thermodynam-
ics is “only by transferring heat from a warmer to a
colder body can heat be converted into work in a
cyclic process.” In Exercise 3.56 we prove that no
engine can be more efficient than a reversible engine
working between the same limits of temperature, and
that all reversible engines working between the same
temperature limits have the same efficiency. The valid-
ity of these two statements, which are known as
Carnot’s theorems, depends on the truth of the sec-
ond law of thermodynamics.

Exercise 3.15 Show that in a Carnot cycle the
ratio of the heat Q1 absorbed from the warm reser-
voir at temperature T1 K to the heat Q2 rejected
to the cold reservoir at temperature T2 K is equal
to T1!T2.

Solution: To prove this important relationship we
let the substance in the Carnot engine be 1 mol of an
ideal gas and we take it through the Carnot cycle
ABCD shown in Fig. 3.20.

For the adiabatic transformation of the ideal gas
from A to B we have (using the adiabatic equation
that the reader is invited to prove in Exercise 3.33)

where 9 is the ratio of the specific heat at constant
pressure to the specific heat at constant volume. For

pA V9
A

! pBV9
B

Force
P

Y

B

SH C

T2T1

Fig. 3.19 The components of Carnot’s ideal heat engine.
Red-shaded areas indicate insulating material, and white
areas represent thermally conducting material. The working
substance is indicated by the blue dots inside the cylinder.

T1 Isotherm

T2 Isotherm

B
C

D
A

Adiabat
Adiabat

Pr
es

su
re

Volume

Fig. 3.20 Representations of a Carnot cycle on a p–V dia-
gram. Red lines are isotherms, and orange lines are adiabats.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 94



3.7 The Second Law of Thermodynamics and Entropy 95

the isothermal transformation from B to C, we have
from Boyle’s law

The transformation from C to D is adiabatic.
Therefore, from the adiabatic equation,

For the isothermal change from D to A

Combining the last four equations gives

(3.79)

Consider now the heats absorbed and rejected by
the ideal gas. In passing from state B to C, heat Q1 is
absorbed from the warm reservoir. Since the inter-
nal energy of an ideal gas depends only on tempera-
ture, and the temperature of the gas does not change
from B to C, it follows from (3.33) that the heat Q1
given to the gas goes solely to do work. Therefore,
from (3.36),

or, using (3.6) applied to 1 mol of an ideal gas,

Therefore

(3.80)

Similarly, the heat Q2 rejected to the cold reservoir in
the isothermal transformation from D to A is given by

(3.81)

From (3.80) and (3.81)

(3.82)
Q1

Q2
!

T1 ln (VC!VB)
T2 ln (VD!VA)

Q2 ! R*T2 ln (VD

VA
)

Q1 ! R*T1 ln (VC

VB
)

Q1 ! $VC

VB

 
R*T1

V
dV ! R*T1$VC

VB 

 
dV
V

Q1 ! $VC

VB

pdV

VC

VB
!

VD

VA

pDVD ! pAVA

pC V9
C ! pD V9

D

pB VB ! pCVC

Therefore, from (3.79) and (3.82),

(3.83) ■

Examples of real heat engines are the steam
engine and a nuclear power plant. The warm and
cold reservoirs for a steam engine are the boiler and
the condenser, respectively. The warm and cold reser-
voirs for a nuclear power plant are the nuclear reac-
tor and the cooling tower, respectively. In both cases,
water (in liquid and vapor forms) is the working sub-
stance that expands when it absorbs heat and
thereby does work by pushing a piston or turning a
turbine blade. Section 7.4.2 discusses how differential
heating within the Earth’s atmosphere maintains
the winds against frictional dissipation through the
action of a global heat engine.

Carnot’s cycle can be reversed in the following
way. Starting from point A in Fig. 3.20, the material in
the cylinder may be expanded at constant tempera-
ture until the state represented by point D is
reached. During this process a quantity of heat Q2 is
taken from the cold reservoir. An adiabatic expan-
sion takes the substance from state D to C. The sub-
stance is then compressed from state C to state B,
during which a quantity of heat Q1 is given up to the
warm reservoir. Finally, the substance is expanded
adiabatically from state B to state A.

In this reverse cycle, Carnot’s ideal engine serves as
a refrigerator or air conditioner, for a quantity of heat
Q2 is taken from a cold body (the cold reservoir) and
heat Q1 (Q1 0 Q2) is given to a hot body (the warm
reservoir). To accomplish this transfer of heat, a quan-
tity of mechanical work equivalent to Q1 & Q2 must
be expended by some outside agency (e.g., an electric
motor) to drive the refrigerator. This leads to another
statement of the second law of thermodynamics,
namely “heat cannot of itself (i.e., without the
performance of work by some external agency) pass
from a colder to a warmer body in a cyclic process.”

3.7.2 Entropy

We have seen that isotherms are distinguished from
each other by differences in temperature and that dry
adiabats can be distinguished by their potential tem-
perature. Here we describe another way of character-
izing the differences between adiabats. Consider the
three adiabats labeled by their potential temperatures
21, 22, and 23 on the p–V diagram shown in Fig. 3.21.

Q1

Q2
!

T1

T2
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In passing reversibly from one adiabat to another
along an isotherm (e.g., in one operation of a Carnot
cycle) heat is absorbed or rejected, where the
amount of heat Qrev (the subscript “rev” indicates
that the heat is exchanged reversibly) depends on
the temperature T of the isotherm. Moreover, it fol-
lows from (3.83) that the ratio Qrev!T is the same no
matter which isotherm is chosen in passing from one
adiabat to another. Therefore, the ratio Qrev!T could
be used as a measure of the difference between the
two adiabats; Qrev!T is called the difference in
entropy (S) between the two adiabats. More pre-
cisely, we may define the increase in the entropy dS
of a system as

(3.84)

where dQrev is the quantity of heat that is added
reversibly to the system at temperature T. For a unit
mass of the substance

(3.85)

Entropy is a function of the state of a system and not
the path by which the system is brought to that state.
We see from (3.38) and (3.85) that the first law of
thermodynamics for a reversible transformation may
be written as

(3.86)

In this form the first law contains functions of state
only.

Tds ! du " pd$

ds # dqrev

T

dS # dQrev

T

When a system passes from state 1 to state 2, the
change in entropy of a unit mass of the system is

(3.87)

Combining (3.66) and (3.67) we obtain

(3.88)

Therefore, because the processes leading to (3.66)
and (3.67) are reversible, we have from (3.85) and
(3.88)

(3.89)

Integrating (3.89) we obtain the relationship between
entropy and potential temperature

(3.90)

Transformations in which entropy (and therefore
potential temperature) is constant are called isen-
tropic. Therefore, adiabats are often referred to as
isentropies in atmospheric science. We see from
(3.90) that the potential temperature can be used as
a surrogate for entropy, as is generally done in
atmospheric science.

Let us consider now the change in entropy in the
Carnot cycle shown in Fig. 3.20. The transformations
from A to B and from C to D are both adiabatic and
reversible; therefore, in these two transformations
there can be no changes in entropy. In passing from
state B to state C, the working substance takes in a
quantity of heat Q1 reversibly from the source at tem-
perature T1; therefore, the entropy of the source
decreases by an amount Q1!T1. In passing from state
D to state A, a quantity of heat Q2 is rejected
reversibly from the working substance to the sink at
temperature T2; therefore, the entropy of the sink
increases by Q2!T2. Since the working substance itself
is taken in a cycle, and is therefore returned to its
original state, it does not undergo any net change in
entropy. Therefore, the net increase in entropy in the
complete Carnot cycle is Q2!T2 & Q1!T1. However,
we have shown in Exercise 3.15 that Q1!T1 ! Q2!T2.
Hence, there is no change in entropy in a Carnot
cycle.

s ! cp ln 2 " constant

ds ! cp
d2

2

dq
T

! cp
d2

2

s2 & s1 ! $2

1
 
dqrev

T
T1

T2

T3

θ1 θ2 θ3
Volume

Pr
es

su
re

Fig. 3.21 Isotherms (red curves labeled by temperature T)
and adiabats (tan curves labeled by potential temperature 2)
on a p–V diagram.
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It is interesting to note that if, in a graph (called a
temperature–entropy diagram40), temperature (in kelvin)
is taken as the ordinate and entropy as the abscissa, the
Carnot cycle assumes a rectangular shape, as shown in
Fig. 3.22 where the letters A, B, C, and D correspond to
the state points in the previous discussion. Adiabatic
processes (AB and CD) are represented by vertical
lines (i.e., lines of constant entropy) and isothermal
processes (BC and DA) by horizontal lines. From (3.84)
it is evident that in a cyclic transformation ABCDA, the
heat Q1 taken in reversibly by the working substance
from the warm reservoir is given by the area XBCY,
and the heat Q2 rejected by the working substance to
the cold reservoir is given by the area XADY.
Therefore, the work Q1 & Q2 done in the cycle is
given by the difference between the two areas, which is
equivalent to the shaded area ABCD in Fig. 3.22.
Any reversible heat engine can be represented by a
closed loop on a temperature–entropy diagram, and the
area of the loop is proportional to the net work done by
or on (depending on whether the loop is traversed
clockwise or counterclockwise, respectively) the engine
in one cycle.

Thermodynamic charts on which equal areas rep-
resent equal net work done by or on the working
substance are particularly useful. The skew T & ln p
chart has this property.

3.7.3 The Clausius–Clapeyron Equation

We will now utilize the Carnot cycle to derive an
important relationship, known as the Clausius–
Clapeyron42 equation (sometimes referred to by
physicists as the first latent heat equation). The
Clausius–Clapeyron equation describes how the
saturated vapor pressure above a liquid changes
with temperature and also how the melting point of
a solid changes with pressure.

Let the working substance in the cylinder of a
Carnot ideal heat engine be a liquid in equilibrium
with its saturated vapor and let the initial state of the
substance be represented by point A in Fig. 3.23 in
which the saturated vapor pressure is es & des at tem-
perature T & dT. The adiabatic compression from
state A to state B, where the saturated vapor pres-
sure is es at temperature T, is achieved by placing the
cylinder on the nonconducting stand and compress-
ing the piston infinitesimally (Fig. 3.24a). Now let the
cylinder be placed on the source of heat at tempera-
ture T and let the substance expand isothermally
until a unit mass of the liquid evaporates (Fig. 3.24b).

40 The temperature–entropy diagram was introduced into meteorology by Shaw.41 Because entropy is sometimes represented by the
symbol : (rather than S), the temperature–entropy diagram is sometimes referred to as a tephigram.

41 Sir (William) Napier Shaw (1854–1945) English meteorologist. Lecturer in Experimental Physics, Cambridge University, 1877–1899.
Director of the British Meteorological Office, 1905–1920. Professor of Meteorology, Imperial College, University of London, 1920–1924.
Shaw did much to establish the scientific basis of meteorology. His interests ranged from the atmospheric general circulation and forecast-
ing to air pollution.

42 Benoit Paul Emile Clapeyron (1799–1864) French engineer and scientist. Carnot’s theory of heat engines was virtually unknown
until Clapeyron expressed it in analytical terms. This brought Carnot’s ideas to the attention of William Thomson (Lord Kelvin) and
Clausius, who utilized them in formulating the second law of thermodynamics.

Fig. 3.22 Representation of the Carnot cycle on a tempera-
ture (T)–entropy (S) diagram. AB and CD are adiabats, and
BC and DA are isotherms.

Fig. 3.23 Representation on (a) a saturated vapor pressure
versus volume diagram and on (b) a saturated vapor pressure
versus temperature diagram of the states of a mixture of a
liquid and its saturated vapor taken through a Carnot cycle.
Because the saturated vapor pressure is constant if tempera-
ture is constant, the isothermal transformations BC and DA
are horizontal lines.
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In this transformation the pressure remains constant
at es and the substance passes from state B to state C
(Fig. 3.24b). If the specific volumes of liquid and
vapor at temperature T are $1 and $2, respectively,
the increase in the volume of the system in passing
from state B to C is ($2 & $1). Also the heat
absorbed from the source is Lv where Lv is the latent
heat of vaporization. The cylinder is now placed
again on the nonconducting stand and a small adia-
batic expansion is carried out from state C to state D
in which the temperature falls from T to T & dT and
the pressure from es to es & des (Fig. 3.24c). Finally,
the cylinder is placed on the heat sink at temperature
T & dT and an isothermal and isobaric compression
is carried out from state D to state A during which
vapor is condensed (Fig. 3.24d). All of the aforemen-
tioned transformations are reversible.

From (3.83)

(3.91)

where Q1 & Q2 is the net heat absorbed by the work-
ing substance in the cylinder during one cycle, which
is also equal to the work done by the working sub-
stance in the cycle. However, as shown in Section 3.3,
the work done during a cycle is equal to the area of
the enclosed loop on a p–V diagram. Therefore, from
Fig. 3.23, Q1 & Q2 ! BC % des ! ($2 & $1)des. Also,
Q1 ! Lv, T1 ! T, and T1 & T2 ! dT. Therefore, sub-
stituting into (3.91),

or

Lv

T
!

($2 & $1)des

dT

Q1

T1
!

Q2

T2
!

Q1 & Q2

T1 & T2

(3.92)

which is the Clausius–Clapeyron equation for the
variation of the equilibrium vapor pressure es with
temperature T.

Since the volume of a unit mass of vapor is very
much greater than the volume of a unit mass of liq-
uid ($2 00 $1), Eq. (3.92) can be written to close
approximation as

(3.93)

Because $2 is the specific volume of water vapor that
is in equilibrium with liquid water at temperature T,
the pressure it exerts at T is es. Therefore, from the
ideal gas equation for water vapor,

(3.94)

combining (3.93) and (3.94), and then substituting
Rv ! 1000 R*!Mw from (3.13), we get

(3.95)

which is a convenient form of the Clausius–
Clapeyron equation. Over the relatively small range
of temperatures of interest in the atmosphere, to
good approximation (3.95) can be applied in incre-
mental form, that is

(3.96)
1
es

 
-es

-T
%

Lv Mw

1000 R*T2

1
es

 
des

dT
%

Lv

RvT2 !
LvMw

1000 R*T2

es $2 ! RvT

des

dT
%

Lv

T$2

des

dT
!

Lv

T ($2 & $1)

T-dT

es – des

T – dT

es – des
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Fig. 3.24 Transformations of a liquid (solid blue) and its saturated vapor (blue dots) in a Carnot cycle. The letters A, B, C, D
indicate the states of the mixture shown in Fig. 3.23. Red-shaded areas are thermally insulating materials.
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Applying (3.95) to the water substance, and integrat-
ing from 273 K to T K,

Alternatively, because es at 273 K ! 6.11 hPa (Fig. 3.9),
Lv ! 2.500 % 106 J kg&1, the molecular weight of water

$es (T K)

es (273 K)

des

es
!

LvMw

1000 R* $T

273
 
dT
T2

(Mw) is 18.016, and R* ! 8.3145 J K&1 mol&1, the satu-
rated vapor pressure of water es (in hPa) at tempera-
ture T K is given by

(3.97)% 5.42 % 103 ( 1
273

&
1
T)

ln 
es (in hPa)

6.11
!

LvMw

1000 R* ( 1
273

&
1
T)

43 If, as is generally the case, the water is in a vessel that is heated from below, the pressure where the bubbles originate is slightly greater
than atmospheric pressure due to the extra pressure exerted by the water above the bubble. Therefore, when the water is boiling steadily, the
temperature at the bottom of the vessel will be slightly in excess of TB. When water is heated in a transparent vessel, the first visible sign of
bubbling occurs well below TB as trains of small bubbles of dissolved air rise to the surface. (Note: the solubility of a gas in a liquid decreases
with increasing temperature.) The “singing” that precedes boiling is due to the collapse of bubbles of water vapor in the upper part of the ves-
sel. Those vapor bubbles probably form around air bubbles that act as nuclei, which originate in the slightly hotter water nearer the source of
the heat. Nuclei of some sort appear to be necessary for continuous steady boiling at TB.Without nuclei the water will not begin to boil until it
is superheated with respect to the boiling point and “bumping” (i.e., delayed boiling) occurs. When bubbles finally form, the vapor pressure in
the bubbles is much greater than the ambient pressure, and the bubbles expand explosively as they rise. Chapter 6 discusses the formation of
water drops from the vapor phase, and ice particles from the vapor and liquid phases both of which require nucleation.

A liquid is said to boil when it is heated to a temper-
ature that is sufficient to produce copious small
bubbles within the liquid. Why do bubbles form at a
certain temperature (the boiling point) for each liq-
uid? The key to the answer to this question is to
realize that if a bubble forms in a liquid, the interior
of the bubble contains only the vapor of the liquid.
Therefore, the pressure inside the bubble is the satu-
ration vapor pressure at the temperature of the liq-
uid. If the saturation vapor pressure is less than the
ambient pressure that acts on the liquid (and there-
fore on a bubble just below the surface of a liquid),
bubbles cannot form. As the temperature increases,
the saturation vapor pressure increases (see Fig. 3.9)
and, when the saturation vapor pressure is equal to
the ambient pressure, bubbles can form at the sur-
face of the liquid and the liquid boils (Fig. 3.25).

Water boils at a temperature TB such that the
saturation vapor pressure at TB is equal to the
atmospheric (or ambient) pressure (patmos)43

(3.98)

From (3.92) expressed in incremental form, and
(3.98)

-patmos

∆TB
!

Lv

TB ($2 & $1)

es(TB) ! patmos

or

(3.99)

Equation (3.99) gives the change in the boiling
point of water with atmospheric pressure (or
ambient pressure in general). Because $2 0 $1, TB
increases with increasing patmos. If the atmospheric
pressure is significantly lower than 1 atm, the boil-
ing point of water will be significantly lower than
100 °C. This is why it is difficult to brew a good
cup of hot tea on top of a high mountain (see
Exercise 3.64)!

-TB

∆patmos
!

TB ($2 & $1)
Lv

3.5 Effect of Ambient Pressure on the Boiling Point of a Liquid

(a) (b)

patmos patmos

Pressure
inside
bubble =
es(TB) = patmos

T < TB
Water

T = TB
Water

Fig. 3.25 (a) Water below its boiling point (TB): bubbles
cannot form because es(T) . patmos. (b) Water at its boil-
ing point: bubbles can form because the pressure inside
them, es(TB), is equal to the atmospheric pressure (patmos)
acting on them.
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3.7.4 Generalized Statement of the Second
Law of Thermodynamics

So far we have discussed the second law of thermo-
dynamics and entropy in a fairly informal manner,
and only with respect to ideal reversible transforma-
tions. The second law of thermodynamics states (in
part) that for a reversible transformation there is no
change in the entropy of the universe (where “uni-
verse” refers to a system and its surroundings). In
other words, if a system receives heat reversibly, the
increase in its entropy is exactly equal in magnitude
to the decrease in the entropy of its surroundings.

The concept of reversibility is an abstraction. A
reversible transformation moves a system through a
series of equilibrium states so that the direction of the
transformation can be reversed at any point by making
an infinitesimal change in the surroundings. All natural
transformations are irreversible to some extent. In an
irreversible (sometimes called a spontaneous) transfor-
mation, a system undergoes finite transformations at
finite rates, and these transformations cannot be
reversed simply by changing the surroundings of the
system by infinitesimal amounts. Examples of irre-
versible transformations are the flow of heat from a
warmer to a colder body, and the mixing of two gases.

If a system receives heat dqirrev at temperature T
during an irreversible transformation, the change in
the entropy of the system is not equal to dqirrev!T. In
fact, for an irreversible transformation there is no
simple relationship between the change in the
entropy of the system and the change in the entropy
of its surroundings. However, the remaining part of
the second law of thermodynamics states that the
entropy of the universe increases as a result of irre-
versible transformations.

The two parts of the second law of thermodynam-
ics stated earlier can be summarized as follows

(3.100a)

(3.100b)

(3.100c)

The second law of thermodynamics cannot be
proved. It is believed to be valid because it leads to
deductions that are in accord with observations and
experience. The following exercise provides an exam-
ple of such a deduction.

transformations
 -Suniverse 0 0 for irreversible (spontaneous) 

transformations
 -Suniverse ! 0 for reversible (equilibrium) 

 -Suniverse ! -Ssystem " -Ssurroundings

Exercise 3.16 Assuming the truth of the second law
of thermodynamics, prove that an isolated ideal gas
can expand spontaneously (e.g., into a vacuum) but it
cannot contract spontaneously.

Solution: Consider a unit mass of the gas. If the gas
is isolated it has no contact with its surroundings,
hence -Ssurroundings ! 0. Therefore, from (3.100a)

(3.101)

Because entropy is a function of state, we can obtain
an expression for -Sgas by taking any reversible and
isothermal path from state 1 to state 2 and evaluating
the integral

Combining (3.46) with (3.3), we have for a reversible
transformation of a unit mass of an ideal gas

Therefore

or

Because the gas is isolated, -q ! -w ! 0; therefore,
from (3.34), -u ! 0. If -u ! 0, it follows from Joule’s
law for an ideal gas that -T ! 0. Hence, the gas must
pass from its initial state (1) to its final state (2)
isothermally.

For an isothermal process, the ideal gas equation
reduces to Boyle’s law, which can be written as
p1$1 ! p2$2, where the $’s are specific volumes.
Therefore, the last expression becomes

(3.102)

From (3.101) and (3.102)

(3.103)-Suniverse ! R ln 
$2

$1

! &R ln 
$1

$2
! R ln 

$2

$1

-Sgas ! cp ln1 & R ln 
p2

p1

-Sgas ! cp ln 
T2

T1
& R ln 

p2

p1

-Sgas ! cp $T2

T1

 
dT
T

& R $p2

p1

 
dp
p

dqrev

T
! cp 

dT
T

& R
dp
p

-Sgas ! $2

1
 
dqrev

T

-Suniverse ! -Sgas
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3.7 The Second Law of Thermodynamics and Entropy 101

Hence, if the second law of thermodynamics is valid,
it follows from (3.100c) and (3.103) that

or

That is, the gas expands spontaneously. However, if
the gas contracted spontaneously, $2 . $1 and
-Suniverse . 0, which would violate the second law of
thermodynamics.

When a gas expands, the disorder of its mole-
cules increases and, as shown in this exercise, the
entropy of the gas increases. This illustrates what is,
in fact, a general result, namely that entropy is a
measure of the degree of disorder (or randomness)
of a system. ■

Section 3.7.2 showed that there is no change
in entropy in a Carnot cycle. Because any reversible
cycle can be divided up into an infinite number of
adiabatic and isothermal transformations, and
therefore into an infinite number of Carnot cycles, it
follows that in any reversible cycle the total change
in entropy is zero. This result is yet another way of
stating the second law of thermodynamics.

In the real world (as opposed to the world of
reversible cycles), systems left to themselves tend
to become more disordered with time, and there-
fore their entropy increases. Consequently, a par-
allel way of stating the two laws of thermodynamics
is (1) “the energy of the universe is constant”
and (2) “the entropy of the universe tends to a
maximum.”

Exercise 3.17 One kilogram of ice at 0 °C is placed
in an isolated container with 1 kg of water at 10 °C
and 1 atm. (a) How much of the ice melts? (b) What
change is there in the entropy of the universe due to
the melting of the ice?

Solution: (a) The ice will melt until the ice-water
system reaches a temperature of 0 °C. Let mass m kg
of ice melt to bring the temperature of the ice-water
system to 0 °C. Then, the latent heat required to melt
m kg of ice is equal to the heat released when the
temperature of 1 kg of water decreases from 10 to
0 °C. Therefore,

$2 0 $1

R ln 
$2

$1
 0  0

where LM is the latent heat of melting of ice (3.34 %
105 J kg&1), c is the specific heat of water (4218 J K&1

kg&1), and -T is 10 K. Hence, the mass of ice that
melts (m) is 0.126 kg. (Note: Because m . 1 kg, it
follows that when the system reaches thermal equi-
librium some ice remains in the water, and therefore
the final temperature of the ice-water system must
be 0 °C.)

(b) Because the container is isolated, there is no
change in the entropy of its surroundings. Therefore,
(3.100a) becomes

Because the ice-water system undergoes an irre-
versible transformation, it follows from (3.100c) that
its entropy increases. (We could also have deduced
that the entropy of the ice-water system increases
when some of the ice melts, because melting
increases the disorder of the system.)

There are two contributions to -Ssystem: the melt-
ing of 0.126 kg of ice (-Sice) and the cooling of 1 kg
of water from 10 to 0 °C (-Swater). The change in
entropy when 0.126 kg of ice is melted at 0 °C is
-Sice ! -Q!T ! mLM!T ! (0.126)(3.34 % 105)!273
! 154 J K&1. The change in entropy associated with
cooling the 1 kg of water from 10 to 0 °C is

Because c ! 4218 J K&1 kg&1

Hence

 ! 2 J K&1

 ! 154 & 152

-Suniverse!-Ssystem ! -Sice " -Swater

 ! &152 J K&1.
 ! 4218 (&0.036)

-Swater ! 4218 ln 
273
283

 ! c$273 K

283 K
 
dT
T

! c ln 
273
283

-Swater ! $273 K

283 K
 
dQ
T

! $273 K

283 K
 
cdT
T

-Suniverse ! -Ssystem

mLM ! c-T
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Exercises
3.18 Answer or explain the following in light of the

principles discussed in this chapter.

(a) To carry a given payload, a hot air balloon
cruising at a high altitude needs to be bigger
or hotter than a balloon cruising at a lower
altitude.

(b) More fuel is required to lift a hot air balloon
through an inversion than to lift it through a
layer of the same depth that exhibits a steep
temperature lapse rate. Other conditions
being the same, more fuel is required to
operate a hot air balloon on a hot day than
on a cold day.

(c) Runways are longer at high altitude airports
such as Denver and stricter weight limits are
imposed on aircraft taking off on hot
summer days.

(d) The gas constant for moist air is greater
than that for dry air.

(e) Pressure in the atmosphere increases
approximately exponentially with depth,
whereas the pressure in the ocean increases
approximately linearly with depth.

(f) Describe a procedure for converting station
pressure to sea-level pressure.

(g) Under what condition(s) does the
hypsometric equation predict an exponential
decrease of pressure with height?

(h) If a low pressure system is colder than its
surroundings, the amplitude of the
depression in the geopotential height field
increases with height.

(i) On some occasions low surface
temperatures are recorded when the 1000-
to 500-hPa thickness is well above normal.
Explain this apparent paradox.

(j) Air released from a tire is cooler than its
surroundings.

(k) Under what conditions can an ideal gas
undergo a change of state without doing
external work?

(l) A parcel of air cools when it is lifted. Dry
parcels cool more rapidly than moist
parcels.

(m) If a layer of the atmosphere is well mixed in
the vertical, how would you expect the

potential temperature within it to change
with height?

(n) In cold climates the air indoors tends to be
extremely dry.

(o) Summertime dew points tend to be higher
over eastern Asia and the eastern United
States than over Europe and the western
United States.

(p) If someone claims to have experienced hot,
humid weather with a temperature in excess
of 90 °F and a relative humidity of 90%, it is
likely that he!she is exaggerating or
inadvertently juxtaposing an afternoon
temperature with an early morning relative
humidity.

(q) Hot weather causes more human discomfort
when the air is humid than when it is dry.

(r) Which of the following pairs of quantities
are conserved when unsaturated air is lifted:
potential temperature and mixing ratio,
potential temperature and saturation mixing
ratio, equivalent potential temperature and
saturation mixing ratio?

(s) Which of the following quantities are
conserved during the lifting of saturated air:
potential temperature, equivalent potential
temperature, mixing ratio, saturation mixing
ratio?

(t) The frost point temperature is higher than
the dew point temperature.

(u) You are climbing in the mountains and
come across a very cold spring of water. If
you had a glass tumbler and a thermometer,
how might you determine the dew point of
the air?

(v) Leaving the door of a refrigerator open
warms the kitchen. (How would the
refrigerator need to be reconfigured to
make it have the reverse effect?)

(w) A liquid boils when its saturation vapor
pressure is equal to the atmospheric
pressure.

3.19 Determine the apparent molecular weight of
the Venusian atmosphere, assuming that it
consists of 95% of CO2 and 5% N2 by volume.
What is the gas constant for 1 kg of such an
atmosphere? (Atomic weights of C, O, and N
are 12, 16, and 14, respectively.)
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3.20 If water vapor comprises 1% of the volume of
the air (i.e., if it accounts for 1% of the
molecules in air), what is the virtual
temperature correction?

3.21 Archimedes’ buoyancy principle asserts that
an object placed in a fluid (liquid or gas) will
be lighter by an amount equal to the weight
of the fluid it displaces. Provide a proof of
this principle. [Hint: Consider the vertical
forces that act on a stationary element of
fluid prior to the element being displaced by
an object.]

3.22 Typical hot air balloons used on sightseeing
flights attain volumes of 3000 m3. A typical
gross weight (balloon, basket, fuel and
passengers, but not the air in the balloon) on
such a balloon flight is 600 kg. If the ground
temperature is 20 °C, the lapse rate is zero, and
the balloon is in hydrostatic equilibrium at a
cruising altitude of 900 hPa, determine the
temperature of the air inside the balloon.

3.23 The gross weight (balloon, basket, fuel and
passengers but not the gas in the balloon) of
two balloons is the same. The two balloons are
cruising together at the same altitude, where the
temperature is 0 °C and the ambient air is dry.
One balloon is filled with helium and the other
balloon with hot air. The volume of the helium
balloon is 1000 m3. If the temperature of the hot
air balloon is 90 °C, what is the volume of the
hot air balloon?

3.24 Using Eq. (3.29) show that pressure decreases
with increasing height at about 1 hPa per 15 m
at the 500-hPa level.

3.25 A cheap aneroid barometer aboard a
radiosonde is calibrated to the correct surface
air pressure when the balloon leaves the
ground, but it experiences a systematic drift
toward erroneously low pressure readings. By
the time the radiosonde reaches the 500-hPa
level, the reading is low by the 5-hPa level (i.e.,
it reads 495 hPa when it should read 500 hPa).
Estimate the resulting error in the 500-hPa
height. Assume a surface temperature of 10 °C
and an average temperature lapse rate of 7 °C
km&1. Assume the radiosonde is released from
sea level and that the error in the pressure
reading is proportional to the height of the
radiosonde above sea level (which, from Eq.
(3.29), makes it nearly proportional to ln p).

Also, assume that the average decrease of
pressure with height is 1 hPa per 11 m of rise
between sea level and 500 hPa.

3.26 A hurricane with a central pressure of 940 hPa
is surrounded by a region with a pressure of
1010 hPa. The storm is located over an ocean
region. At 200 hPa the depression in the
pressure field vanishes (i.e., the 200-hPa
surface is perfectly flat). Estimate the average
temperature difference between the center of
the hurricane and its surroundings in the layer
between the surface and 200 hPa. Assume that
the mean temperature of this layer outside the
hurricane is &3 °C and ignore the virtual
temperature correction.

3.27 A meteorological station is located 50 m below
sea level. If the surface pressure at this station is
1020 hPa, the virtual temperature at the surface
is 15 °C, and the mean virtual temperature for
the 1000- to 500-hPa layer is 0 °C, compute the
height of the 500-hPa pressure level above sea
level at this station.

3.28 The 1000- to 500-hPa layer is subjected to a
heat source having a magnitude of 5.0 % 106 J
m&2. Assuming that the atmosphere is at rest
(apart from the slight vertical motions
associated with the expansion of the layer)
calculate the resulting increase in the mean
temperature and in the thickness of the layer.
[Hint: Remember that pressure is force per
unit area.]

3.29 The 1000- to 500-hPa thickness is predicted to
increase from 5280 to 5460 m at a given station.
Assuming that the lapse rate remains constant,
what change in surface temperature would you
predict?

3.30 Derive a relationship for the height of a given
pressure surface (p) in terms of the pressure p0
and temperature T0 at sea level assuming that
the temperature decreases uniformly with
height at a rate 1 K km&1.

Solution: Let the height of the pressure sur-
face be z; then its temperature T is given by

(3.104)

combining the hydrostatic equation (3.17) with
the ideal gas equation (3.2) yields

T ! T0 & 1z
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(3.105)

From (3.104) and (3.105)

Integrating this equation beween pressure lev-
els p0 and p and corresponding heights 0 and z
and neglecting the variation of ! with z, we
obtain

or

Therefore,

(3.106)

This equation forms the basis for the
calibration of aircraft altimeters. An altimeter
is simply an aneroid barometer that measure
ambient air pressure p. However, the scale of
the altimeter is expressed at the height z of the
aircraft, where z is related to p by (3.106) with
values of T0, p0 and 1 appropriate to the U.S.
Standard Atmosphere, namely, T0 ! 288 K,
p0 ! 1013.25 hPa, and 1 ! 6.50 K km&1. ■

3.31 A hiker sets his pressure altimeter to the
correct reading at the beginning of a hike
during which he climbs from near sea level to
an altitude of 1 km in 3 h. During this same
time interval the sea-level pressure drops by
8 hPa due to the approach of a storm.
Estimate the altimeter reading at the end of
the hike.

3.32 Calculate the work done in compressing
isothermally 2 kg of dry air to one-tenth of its
volume at 15 °C.

3.33 (a) Prove that when an ideal gas undergoes an
adiabatic transformation pV9 ! constant, where
9 is the ratio of the specific heat at constant
pressure (cp) to the specific heat at constant
volume (cv). [Hint: By combining (3.3) and (3.41)

z !
T0

1
 &1 & ( p

p0
)RT!!'

ln 
p
p0

!
!

R1
 ln (T0 & 1z

T0
)

$p

p0

 
dp
p

! &
!
R

 $z

0
 

dz
(T0 & 1z)

dp
p

! &
!

R(T0 & 1z)
 dz

dp
p

! &
!

RT
 dz

show that for an adiabatic transformation of a
unit mass of gas cv(pd$ " $dp) " Rpd$ ! 0.
Then combine this last expression with (3.45)
and proceed to answer.] (b) 7.50 cm3 of air at
17 °C and 1000 hPa is compressed isothermally
to 2.50 cm3.The air is then allowed to expand
adiabatically to its original volume. Calculate the
final temperature and final pressure of the gas.

3.34 If the balloon in Exercise 3.22 is filled with air at
the ambient temperature of 20 °C at ground
level where the pressure is 1013 hPa, estimate
how much fuel will need to be burned to lift the
balloon to its cruising altitude of 900 hPa.
Assume that the balloon is perfectly insulated
and that the fuel releases energy at a rate of 5 %
107 J kg&1.

3.35 Calculate the change in enthalpy when 3 kg of
ice at 0 °C is heated to liquid water at 40 °C.
[The specific heat at constant pressure of liquid
water (in J K&1 kg&1) at T K is given by
cpw ! 4183.9 " 0.1250 T.]

3.36 Prove that the potential temperature of an air
parcel does not change when the parcel moves
around under adiabatic and reversible conditions
in the atmosphere. [Hint: Use Eq. (3.1) and the
adiabatic equation pV9 ! constant (see Exercise
3.33) to show that T (p0!p)R!cp ! constant, and
hence from Eq. (3.54) that 2 ! constant.]

3.37 The pressure and temperature at the levels at
which jet aircraft normally cruise are typically
200 hPa and &60 °C. Use a skew T & ln p chart
to estimate the temperature of this air if it
were compressed adiabatically to 1000 hPa.
Compare your answer with an accurate
computation.

3.38 Consider a parcel of dry air moving with the
speed of sound (cs), where

9 ! cp!cv ! 1.40, Rd is the gas constant for a
unit mass of dry air, and T is the temperature of
the air in degrees kelvin.

(a) Derive a relationship between the macro-
scopic kinetic energy of the air parcel Km
and its enthalpy H.

(b) Derive an expression for the fractional
change in the speed of sound per degree
kelvin change in temperature in terms of cv,
Rd, and T.

cs ! (9RdT)
1
2
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3.39 A person perspires. How much liquid water (as
a percentage of the mass of the person) must
evaporate to lower the temperature of the
person by 5 °C? (Assume that the latent heat of
evaporation of water is 2.5 % 106 J kg&1, and
the specific heat of the human body is 
4.2 % 103 J K&1 kg&1.)

3.40 Twenty liters of air at 20 °C and a relative
humidity of 60% are compressed isothermally
to a volume of 4 liters. Calculate the mass of
water condensed. The saturation vapor pressure
of water at 20 °C is 23 hPa. (Density of air at 0
°C and 1000 hPa is 1.28 kg m&3.)

3.41 If the specific humidity of a sample of air is
0.0196 at 30 °C, find its virtual temperature. If
the total pressure of the moist air is 1014 hPa,
what is its density?

3.42 A parcel of moist air has a total pressure of 975
hPa and a temperature of 15 °C. If the mixing
ratio is 1.80 g kg&1, what are the water vapor
pressure and the virtual temperature?

3.43 An isolated raindrop that is evaporating into air
at a temperature of 18 °C has a temperature of
12 °C. Calculate the mixing ratio of the air.
(Saturation mixing ratio of air at 12 °C is
8.7 g kg&1. Take the latent heat of evaporation
of water to be 2.25 % 106 J kg&1.)

3.44 Four grams of liquid water condense out of 1 kg
of air during a moist-adiabatic expansion. Show
that the internal energy associated with this
amount of liquid water is only 2.4% of the
internal energy of the air.

3.45 The current mean air temperature at 1000 hPa
in the tropics is about 25 °C and the lapse rate is
close to saturated adiabatic. Assuming that the
lapse rate remains close to saturated adiabatic,
by how much would the temperature change
at 250 hPa if the temperature in the tropics at
1000 hPa were to increase by 1 °C. [Hint: Use a
skew T & ln p chart.]

3.46 An air parcel at 1000 hPa has an initial
temperature of 15 °C and a dew point of 4 °C.
Using a skew T & ln p chart,

(a) Find the mixing ratio, relative humidity, wet-
bulb temperature, potential temperature, and
wet-bulb potential temperature of the air.

(b) Determine the magnitudes of the parameters
in (a) if the parcel rises to 900 hPa.

(c) Determine the magnitudes of the parameters
in (a) if the parcel rises to 800 hPa.

(d) Where is the lifting condensation level?

3.47 Air at 1000 hPa and 25 °C has a wet-bulb
temperature of 20 °C.

(a) Find the dew point.
(b) If this air were expanded until all the

moisture condensed and fell out and it were
then compressed to 1000 hPa, what would
be the resulting temperature?

(c) What is this temperature called?

3.48 Air at a temperature of 20 °C and a mixing ratio
of 10 g kg&1 is lifted from 1000 to 700 hPa by
moving over a mountain.What is the initial dew
point of the air? Determine the temperature of
the air after it has descended to 900 hPa on the
other side of the mountain if 80% of the
condensed water vapor is removed by
precipitation during the ascent. (Hint: Use the
skew T & ln p chart.)

3.49 (a) Show that when a parcel of dry air at
temperature T( moves adiabatically in ambient
air with temperature T, the temperature lapse
rate following the parcel is given by

(b) Explain why the lapse rate of the air parcel
in this case differs from the dry adiabatic
lapse rate (!!cp). [Hint: Start with Eq.
(3.54) with T ! T(. Take the natural
logarithm of both sides of this equation
and then differentiate with respect to
height z.]

Solution:

(a) From (3.54) with T ! T( we have for the air
parcel

Therefore,

Differentiating this last expression with
respect to height z

ln 2 ! ln T( "
R
cp

 (ln p0 & ln p)

2 ! T((p0

p )
R!cp

&
dT(

dz
!

T(

T
 
!
cp
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(3.110)44

However, for the ambient air we have, from
the hydrostatic equation,

(3.111)

From (3.110) and (3.111):

For an adiabatic process 2 is conserved (i.e.,

. Therefore,

or

(3.112)

However, the ideal gas equation for the
ambient air is

(3.113)

From (3.112) and (3.113),

(3.114)

(b) The derivation of an expression for the
dry adiabatic lapse rate, namely

was based on the

assumption that the macroscopic kinetic
energy of the air parcel was negligible
compared to its total energy (see Sections
3.4.1 and 3.4.2). However, in the present
exercise the temperature of the air parcel
(T() differs from the temperature of the
ambient air (T). Therefore, the air parcel
is acted upon by a buoyancy force, which

1d # &(dT
dz)dry parcel

!
!
cp

,

dT(

dz
! &

T(

T
 
!
cp

p ! R#T

dT(

dz
! &

R#T(!
pcp

0 !
1

T(
 
dT(

dz
 "

R!#

pcp

d2

dz
! 0

1
2
 
d2

dz
 !  

1
T(

 
dT(

dz
&

R
cp

 
1
p

  (&!#)

dp
dz

! &!#

1
2
 
d2

dz
 !  

1
T(

 
dT(

dz
&

R
cp

 
1
p

 
dp
dz

accelerates the air parcel in the
vertical and gives it macroscopic kinetic
energy. Note that if T( ! T, Eq. (3.114)
reduces to

■

3.50 Derive an expression for the rate of change
in temperature with height (1s) of a parcel of
air undergoing a saturated adiabatic process.

Assume that is small compared to 1.

Solution: Substituting (3.20) into (3.51) yields

(3.115)

If the saturation ratio of the air with respect to
water is ws, the quantity of heat dq released into
(or absorbed from) a unit mass of dry air due to
condensation (or evaporation) of liquid water is
&Lv dws, when Lv is the latent heat of conden-
sation. Therefore,

(3.116)

If we neglect the small amounts of water vapor
associated with a unit mass of dry air, which are
also warmed (or cooled) by the release (or
absorption) of the latent heat, then cp in (3.116)
is the specific heat at constant pressure of dry
air. Dividing both sides of (3.116) by cp dz and
rearranging terms, we obtain

Therefore,

(3.117)

dT
dz

 &1 "
Lv

cp
 (dws

dT )
p
' ! &

!
cp

 &1 "
Lv

!
 (dws

dp )T 
dp
dz'

 ! &
Lv

cpdz
 &(dws

dp )Tdp " (dws

dT )
p
dT' &

!
cp

dT
dz

 ! &
Lv

cp
 
dws

dz
 &

!
cp

&Lvdws ! cpdT " !dz

dq ! cpdT " !dz

#Lv(dws

dp )T

&
dT
dz

!
!
cp

! 1d

44 Eqs. (3.107)–(3.110) appear in Exercise solutions provided on the book web site.

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 106



Exercises 107

Alternatively, using the hydrostatic equation on
the last term on the right side of (3.117)

or

(3.118)

In Exercise (3.51) we show that

If we neglect this small term in (3.118) we obtain

■

3.51 In deriving the expression for the saturated
adiabatic lapse rate in the previous exercise, it is
assumed that #Lv (dws!dp)T is small compared
to 1. Estimate the magnitude of #Lv (dws!dp)T.
Show that this last expression is dimensionless.
[Hint: Use the skew T & ln p chart given in the
book web site enclosed with this book to
estimate the magnitude of (dws!dp)T for a
pressure change of, say, 1000 to 950 hPa at 0 °C.]

Solution: Estimation of magnitude of 

Take and Lv ! 2.5 % 106 J kg&1.

Suppose pressure changes from 1000 to 950 hPa
so that dp ! &50 hPa ! &5000 Pa. Then, from
the skew T & ln p chart, we find that

%  0.25 % 10&3 kg!kg

dws %  (4 & 3.75) ! 0.25 g!kg

# %1.275 kg m&3

#Lv(dws

dp )T

1s # &
dT
dz

 %  
1d

1 "
Lv

cp
 (dws

dT )
p

&#Lv(dws

dp )T 
% 0.12

1s # &
dT
dz

! 1d 

 &1 & #Lv (dws

dp )T'
&1 "

Lv

cp
 (dws

dT )
p
'

1s # &
dT
dz

!

!
cp

 &1 & #Lv (dws

dp )T'
1 "

L
cp

 (dws

dT )
p

Hence,

The units of are

which is dimensionless. ■

3.52 In deriving Eq. (3.71) for equivalent potential
temperature it was assumed that

(3.119)

Justify this assumption. [Hint: Differentiate
the right-hand side of the aforementioned
expression and, assuming Lv!cp is independent
of temperature, show that the aforementioned
approximation holds provided

Verify this inequality by noting the relative
changes in T and ws for small incremental dis-
placements along saturated adiabats on a skew
T & ln p chart.]

Solution: Differentiating the right side of
(3.119) and assuming Lv!cp is a constant,

(3.120)

If (which can be verified from skew

T & ln p chart) then

(3.121)
dws

dT
 00 ws

T

dT
T

 .. dws

ws

!
Lv dT
Tcp

 &dws

dT
&

ws

T '

Lv

cp
 &1

T
 dws & ws

dT
T2' !

Lv

Tcp
 &dws & ws

dT
T '

dT
T

 .. dws

ws

Lv

cpT
 dws %  d (Lvws

cpT )

(kg m&3) (J kg&1)(kg kg&1)( 1
Pa)

#Lv(dws

dp )T

(0.25 % 10&3 kg kg&1

&5000 Pa ) %  &0.12

#Lv(dws

dp )T
%  (1.275 kg m&3)(2.5 % 106 J kg&1) 
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Therefore, from (3.120) and (3.121):

Right side of (3.119) ! Left side of 

(3.119) ■

3.53 Plot the following sounding on a skew T & ln p
chart:

Pressure level Air temperature Dew point 
(hPa) (°C) (°C)

A 1000 30.0 21.5

B 970 25.0 21.0

C 900 18.5 18.5

D 850 16.5 16.5

E 800 20.0 5.0

F 700 11.0 &4.0

G 500 &13.0 &20.0

(a) Are layers AB, BC, CD, etc. in stable,
unstable, or neutral equilibrium?

(b) Which layers are convectively unstable?45

3.54 Potential density D is defined as the density
that dry air would attain if it were transformed
reversibly and adiabatically from its existing
conditions to a standard pressure p0 (usually
1000 hPa).

(a) If the density and pressure of a parcel of the
air are # and p, respectively, show that

where cp and cv are the specific heats of air
at constant pressure and constant volume,
respectively.

(b) Calculate the potential density of a quantity
of air at a pressure of 600 hPa and a
temperature of &15 °C.

(c) Show that

1
D

 
dD
dz

! &
1
T

 (1d & 1)

D ! # (p0

p )
cv!cp

Lv

Tcp
dws !

where 1d is the dry adiabatic lapse rate, 1
the actual lapse rate of the atmosphere, and
T the temperature at height z. [Hint: Take
the natural logarithms of both sides of the
expression given in (a) and then differenti-
ate with respect to height z.]

(d) Show that the criteria for stable, neutral,
and unstable conditions in the atmosphere
are that the potential density decreases with
increasing height, is constant with height,
and increases with increasing height,
respectively. [Hint: Use the expression
given in (c).]

(e) Compare the criteria given in (d) with those
for stable, neutral, and unstable conditions
for a liquid.

3.55 A necessary condition for the formation of
a mirage is that the density of the air increases
with increasing height. Show that this condition
is realized if the decrease of atmospheric
temperature with height exceeds 3.5 1d, where
1d is the dry adiabatic lapse rate. [Hint: Take the
natural logarithm of both sides of the
expression for D given in Exercise 3.54a and
then differentiate with respect to height z.
Follow the same two steps for the gas
equation in the form p ! #RdT. Combine the
two expressions so derived with the
hydrostatic equation to show that 

. Hence, proceed to 

the solution.]

3.56 Assuming the truth of the second law of
thermodynamics, prove the following two
statements (known as Carnot’s theorems):

(a) No engine can be more efficient than a
reversible engine working between the
same limits of temperature. [Hint: The
efficiency of any engine is given by Eq.
(3.78); the distinction between a reversible
(R) and an irreversible (I) engine is that R
can be driven backward but I cannot.
Consider a reversible and an irreversible
engine working between the same limits of

1
#
 
d#

dt
! &

1
T

(dT!dz " !!Rd)

45 For a more realistic treatment of the stability of a layer, see Chapter 9.3.5.
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temperature. Suppose initially that I is
more efficient than R and use I to drive R
backward. Show that this leads to a
violation of the second law of
thermodynamics, and hence prove that I
cannot be more efficient than R.]

(b) All reversible engines working between the
same limits of temperature have the same
efficiency. [Hint: Proof is similar to that for
part (a).]

Solution:

(a) To prove that no engine can be more efficient
than a reversible engine working between
the same limits of temperature, consider a
reversible (R) and irreversible (I) engine
working between 21 and 22.Assume I is more
efficient than R and that R takes heat
Q1 from source and yields heat Q2 to sink
(Fig. 3.26).Therefore, if I takes Q1 from
source it must yield heat Q2 & q (q positive)
to sink. Now let us use I to drive R backward.
This will require I to do work Q1 & Q2 on R.
However, in one cycle, I develops work 
Q1 & (Q2 & q) ! (Q1 & Q2) " q. Hence,
even when I is drawing R backward,
mechanical work q is still available. However,
in one cycle of the combined system, heat 
Q2 & (Q2 & q) ! q is taken from a colder
body. Because this violates the second law of
thermodynamics, I cannot be more efficient
than R.

(b) Take two reversible engines operating
between 21 and 22 and assume one engine is
more efficient than the other.Then, following
same procedure as in (a), it can be shown that
if one reversible engine is more efficient than
another the second law is violated. ■

3.57 Lord Kelvin introduced the concept of available
energy, which he defined as the maximum
amount of heat that can be converted into work
by using the coldest available body in a system as
the sink for an ideal heat engine. By considering
an ideal heat engine that uses the coldest
available body as a sink, show that the available
energy of the universe is tending to zero and that

loss of available energy ! T0 (increase in
entropy)

where T0 is the temperature of the coldest
available body.

Solution: For an ideal reversible engine

Work done in 1 cycle !

If an engine operates with sink at T0 (! T2):

Available energy =

Let Q pass from T1 to T2 (T1 0 T2) by, say, con-
duction or radiation. Then,

Loss of available energy

Because T1 > T2, there is a loss of available
energy for natural processes

Loss of available energy

■

3.58 An ideal reversible engine has a source and sink
at temperatures of 100 and 0 °C, respectively. If
the engine receives 20 J of heat from the source
in every cycle, calculate the work done by the
engine in 10 cycles. How much heat does the
engine reject to the sink in 10 cycles?

3.59 A refrigerator has an internal temperature of
0 °C and is situated in a room with a steady

! T0 (increase in entropy)

! T0(Q
T2

&
Q
T1
)

! QT0(T1 & T2

T1T2
)

! (T1 & T0

T1
)Q & (T2 & T0

T2
)Q

T1 & T0

T1
Q1

Q1 & Q2 !
T1 & T2

T1
Q1.

Q1 & Q2

Q1
!

T1 & T2

T1

Q1 Q1

Q2 Q2 – q

R I

Source
θ 1

Sink
θ 2

Fig. 3.26

P732951-Ch03.qxd  9/12/05  7:41 PM  Page 109



110 Atmospheric Thermodynamics

temperature of 17 °C. If the refrigerator is driven
by an electric motor 1 kW in power, calculate the
time required to freeze 20 kg of water already
cooled to 0 °C when the water is placed in the
refrigerator.The refrigerator may be considered
to act as an ideal heat engine in reverse.

3.60 A Carnot engine operating in reverse (i.e., as an
air conditioner) is used to cool a house. The
indoor temperature of the house is maintained
at Ti and the outdoor temperature is To (To >
Ti). Because the walls of the house are not
perfectly insulating, heat is transferred into the
house at a constant rate given by

where K (00) is a constant.

(a) Derive an expression for the power (i.e.,
energy used per second) required to drive
the Carnot engine in reverse in terms of To,
Ti, and K.

(b) During the afternoon, the outdoor
temperature increases from 27 to 30 °C.What
percentage increase in power is required to
drive the Carnot engine in reverse to
maintain the interior temperature of the
house at 21 °C?

3.61 Calculate the change in entropy of 2 g of ice
initially at &10 °C that is converted to steam at
100 °C due to heating.

3.62 Calculate the change in entropy when 1 mol of
an ideal diatomic gas initially at 13 °C and 1 atm
changes to a temperature of 100 °C and a
pressure of 2 atm.

3.63 Show that the expression numbered (3.118) in
the solution to Exercise 3.50 can be written as

3.64 The pressure at the top of Mt. Rainier is about
600 hPa. Estimate the temperature at which
water will boil at this pressure. Take the specific
volumes of water vapor and liquid water to be
1.66 and 1.00 % 10&3 m3 kg&1, respectively.

3.65 Calculate the change in the melting point of ice
if the pressure is increased from 1 to 2 atm. (The
specific volumes of ice and water at 0 °C are

1s ! 1d 
(1 " wsLv!RdT)

(1 " wsLv
2!cpRvT2)

(dq
dt)leakage

! K(To & Ti)

1.0908 % 10&3 and 1.0010 % 10&3 m3 kg&1,
respectively.) [Hint: Use (3.112).]

3.66 By differentiating the enthalpy function,
defined by Eq. (3.47), show that

where s is entropy. Show that this relation is
equivalent to the Clausius–Clapeyron equation.

Solution: From Eq. (3.47) in the text,

Therefore,

or, using Eq. (3.38) in the text,

Using Eq. (3.85) in the text,

(3.151)

We see from (3.151) that h is a function of two
variables, namely s and p. Hence, we can write

(3.152)

From (3.151) and (3.152),

(3.153)

Because the order of differentiating does not
matter,

(3.154)

From (3.153) and (3.154),

(dT
dp)s ! (d$

ds)p

*

*p
 (dh

ds)p !
*

*s
 (dh

dp)s

(dh
ds)p ! T  and (dh

dp)s ! $

dh ! (dh
ds)p 

ds " (dh
dp)s dp ! $

dh ! Tds " $dp

! dq " $dp

dh ! (dq & pd$) " pd$ " $dp

dh ! du " pd$ " $dp

h ! u " p$

(dp
dT)s ! (ds

d$)p
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or

(3.155)

Because, from Eq. (3.85) in the text,

for a phase change from liquid to vapor at
temperature T

(3.156)

where Lv is the latent heat of evaporation.
If the vapor is saturated so that p ! es and
d$ ! $2 & $1, where $2 and $1 are the specific
volume of the vapor and liquid, respectively,
we have from (3.155) and (3.156),

(des

dT)s !
Lv

T($2 & $1)

ds !
Lv

T

ds !
dq
T

(dp
dT)s ! (ds

d$)p
which is the Clausius–Clapeyron equation [see
Eq. (3.92) in the text]. Equation (3.155) is one
of Maxwell’s four thermodynamic equations.
The others are

(3.157)

(3.158)

and

(3.159)

Equations (3.157)–(3.159) can be proven in anal-
ogous ways to the proof of (3.155) given earlier
but, in place of (3.151), starting instead with the
state functions f ! u & Ts, ! ! u & Ts " p$, and
du ! Tds & pd$, respectively.The state functions
f and ! are called Helmholtz free energy and
Gibbs function, respectively. ■

(dT
d$)s ! & (dp

ds)$

(d$

dT)p ! & (ds
dp)T

(ds
d$)T ! (dp

dT)$
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