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1. Introduction
The subject of geophysical fluid dynamics deals with the dynamics of the atmosphere
and the ocean. It has recently become an important branch of fluid dynamics due to
our increasing interest in the environment. The field has been largely developed by
meteorologists and oceanographers, but non-specialists have also been interested in
the subject. Taylor was not a geophysical fluid dynamicist, but he held the position of
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a meteorologist for some time, and through this involvement he developed a special
interest in the problems of turbulence and instability. Although Prandtl was mainly
interested in the engineering aspects of fluid mechanics, his well-known textbook
(Prandtl, 1952) contains several sections dealing with meteorological aspects of fluid
mechanics. Notwithstanding the pressure for specialization that we all experience
these days, it is worthwhile to learn something of this fascinating field even if one’s
primary interest is in another area of fluid mechanics.

The importance of the study of atmospheric dynamics can hardly be overem-
phasized. We live within the atmosphere and are almost helplessly affected by the
weather and its rather chaotic behavior. The motion of the atmosphere is intimately
connected with that of the ocean, with which it exchanges fluxes of momentum, heat
and moisture, and this makes the dynamics of the ocean as important as that of the
atmosphere. The study of ocean currents is also important in its own right because of
its relevance to navigation, fisheries, and pollution disposal.

The two features that distinguish geophysical fluid dynamics from other areas of
fluid dynamics are the rotation of the earth and the vertical density stratification of
the medium. We shall see that these two effects dominate the dynamics to such an
extent that entirely new classes of phenomena arise, which have no counterpart in the
laboratory scale flows we have studied in the preceding chapters. (For example, we
shall see that the dominant mode of flow in the atmosphere and the ocean is along
the lines of constant pressure, not from high to low pressures.) The motion of the
atmosphere and the ocean is naturally studied in a coordinate frame rotating with
the earth. This gives rise to the Coriolis force, which is discussed in Chapter 4. The
density stratification gives rise to buoyancy force, which is introduced in Chapter 4
(Conservation Laws) and discussed in further detail in Chapter 7 (Gravity Waves). In
addition, important relevant material is discussed in Chapter 5 (Vorticity), Chapter 10
(Boundary Layer), Chapter 12 (Instability), and Chapter 13 (Turbulence). The reader
should be familiar with these before proceeding further with the present chapter.

Because Coriolis forces and stratification effects play dominating roles in both
the atmosphere and the ocean, there is a great deal of similarity between the dynam-
ics of these two media; this makes it possible to study them together. There are also
significant differences, however. For example the effects of lateral boundaries, due to
the presence of continents, are important in the ocean but not in the atmosphere. The
intense currents (like the Gulf Stream and the Kuroshio) along the western boundaries
of the ocean have no atmospheric analog. On the other hand phenomena like cloud
formation and latent heat release due to moisture condensation are typically atmo-
spheric phenomena. Processes are generally slower in the ocean, in which a typical
horizontal velocity is 0.1 m/s, although velocities of the order of 1–2 m/s are found
within the intense western boundary currents. In contrast, typical velocities in the
atmosphere are 10–20 m/s. The nomenclature can also be different in the two fields.
Meteorologists refer to a flow directed to the west as an “easterly wind” (i.e., from the
east), while oceanographers refer to such a flow as a “westward current.” Atmospheric
scientists refer to vertical positions by “heights” measured upward from the earth’s
surface, while oceanographers refer to “depths” measured downward from the sea
surface. However, we shall always take the vertical coordinate z to be upward, so no
confusion should arise.
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We shall see that rotational effects caused by the presence of the Coriolis force
have opposite signs in the two hemispheres. Note that all figures and descriptions
given here are valid for the northern hemisphere. In some cases the sense of the
rotational effect for the southern hemisphere has been explicitly mentioned. When
the sense of the rotational effect is left unspecified for the southern hemisphere, it has
to be assumed as opposite to that in the northern hemisphere.

2. Vertical Variation of Density in Atmosphere and Ocean
An important variable in the study of geophysical fluid dynamics is the density strat-
ification. In equation (1.38) we saw that the static stability of a fluid medium is
determined by the sign of the potential density gradient

dρpot

dz
= dρ

dz
+ gρ

c2 , (14.1)

where c is the speed of sound. A medium is statically stable if the potential density
decreases with height. The first term on the right-hand side corresponds to the in situ
density change due to all sources such as pressure, temperature, and concentration of
a constituent such as the salinity in the sea or the water vapor in the atmosphere. The
second term on the right-hand side is the density gradient due to the pressure decrease
with height in an adiabatic environment and is called the adiabatic density gradient.
The corresponding temperature gradient is called the adiabatic temperature gradient.
For incompressible fluids c = ∞ and the adiabatic density gradient is zero.

As shown in Chapter 1, Section 10, the temperature of a dry adiabatic atmosphere
decreases upward at the rate of ≈10 ◦C/km; that of a moist atmosphere decreases
at the rate of ≈5–6 ◦C/km. In the ocean, the adiabatic density gradient is gρ/c2

∼4×10−3 kg/m4, taking a typical sonic speed of c = 1520 m/s. The potential density
in the ocean increases with depth at a much smaller rate of 0.6 × 10−3 kg/m4, so
that the two terms on the right-hand side of equation (14.1) are nearly in balance.
It follows that most of the in situ density increase with depth in the ocean is due to
the compressibility effects and not to changes in temperature or salinity. As potential
density is the variable that determines the static stability, oceanographers take into
account the compressibility effects by referring all their density measurements to the
sea level pressure. Unless specified otherwise, throughout the present chapter potential
density will simply be referred to as “density,” omitting the qualifier “potential.”

The mean vertical distribution of the in situ temperature in the lower 50 km of
the atmosphere is shown in Figure 14.1. The lowest 10 km is called the troposphere,
in which the temperature decreases with height at the rate of 6.5 ◦C/km. This is
close to the moist adiabatic lapse rate, which means that the troposphere is close to
being neutrally stable. The neutral stability is expected because turbulent mixing due
to frictional and convective effects in the lower atmosphere keeps it well-stirred and
therefore close to the neutral stratification. Practically all the clouds, weather changes,
and water vapor of the atmosphere are found in the troposphere. The layer is capped by
the tropopause, at an average height of 10 km, above which the temperature increases.
This higher layer is called the stratosphere, because it is very stably stratified. The
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Figure 14.1 Vertical distribution of temperature in the lower 50 km of the atmosphere.

increase of temperature with height in this layer is caused by the absorption of the sun’s
ultraviolet rays by ozone. The stability of the layer inhibits mixing and consequently
acts as a lid on the turbulence and convective motion of the troposphere. The increase
of temperature stops at the stratopause at a height of nearly 50 km.

The vertical structure of density in the ocean is sketched in Figure 14.2, showing
typical profiles of potential density and temperature. Most of the temperature increase
with height is due to the absorption of solar radiation within the upper layer of the
ocean. The density distribution in the ocean is also affected by the salinity. However,
there is no characteristic variation of salinity with depth, and a decrease with depth
is found to be as common as an increase with depth. In most cases, however, the
vertical structure of density in the ocean is determined mainly by that of temperature,
the salinity effects being secondary. The upper 50–200 m of ocean is well-mixed,
due to the turbulence generated by the wind, waves, current shear, and the convective
overturning caused by surface cooling. The temperature gradients decrease with depth,
becoming quite small below a depth of 1500 m. There is usually a large temperature
gradient in the depth range of 100–500 m. This layer of high stability is called the
thermocline. Figure 14.2 also shows the profile of buoyancy frequency N, defined by

N2 ≡ − g

ρ0

dρ

dz
,

whereρ of course stands for the potential density andρ0 is a constant reference density.
The buoyancy frequency reaches a typical maximum value of Nmax ∼ 0.01 s−1

(period ∼ 10 min) in the thermocline and decreases both upward and downward.
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Figure 14.2 Typical vertical distributions of: (a) temperature and density; and (b) buoyancy frequency
in the ocean.

3. Equations of Motion
In this section we shall review the relevant equations of motion, which are derived and
discussed in Chapter 4. The equations of motion for a stratified medium, observed in
a system of coordinates rotating at an angular velocity ! with respect to the “fixed
stars,” are

∇ • u = 0,

Du
Dt

+ 2! × u = − 1
ρ0

∇p − gρ

ρ0
k + F,

Dρ

Dt
= 0,

(14.2)

where F is the friction force per unit mass. The diffusive effects in the density equation
are omitted in set (14.2) because they will not be considered here.

Set (14.2) makes the so-called Boussinesq approximation, discussed in Chapter 4,
Section 18, in which the density variations are neglected everywhere except in the
gravity term. Along with other restrictions, it assumes that the vertical scale of the
motion is less than the “scale height” of the medium c2/g, where c is the speed
of sound. This assumption is very good in the ocean, in which c2/g ∼ 200 km. In
the atmosphere it is less applicable, because c2/g ∼ 10 km. Under the Boussinesq
approximation, the principle of mass conservation is expressed by ∇ • u = 0. In
contrast, the density equation Dρ/Dt = 0 follows from the nondiffusive heat equation
DT/Dt = 0 and an incompressible equation of state of the form δρ/ρ0 = −αδT .
(If the density is determined by the concentration S of a constituent, say the water
vapor in the atmosphere or the salinity in the ocean, then Dρ/Dt = 0 follows from
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the nondiffusive conservation equation for the constituent in the form DS/Dt = 0,
plus the incompressible equation of state δρ/ρ0 = βδS.)

The equations can be written in terms of the pressure and density perturbations
from a state of rest. In the absence of any motion, suppose the density and pressure
have the vertical distributions ρ̄(z) and p̄(z), where the z-axis is taken vertically
upward. As this state is hydrostatic, we must have

dp̄

dz
= −ρ̄g. (14.3)

In the presence of a flow field u(x, t), we can write the density and pressure as

ρ(x, t) = ρ̄(z) + ρ′(x, t),

p(x, t) = p̄(z) + p′(x, t),
(14.4)

where ρ′ and p′ are the changes from the state of rest. With this substitution, the first
two terms on the right-hand side of the momentum equation in (14.2) give

− 1
ρ0

∇p − gρ

ρ0
k = − 1

ρ0
∇(p̄ + p′) − g(ρ̄ + ρ′)

ρ0
k

= − 1
ρ0

[
dp̄

dz
k + ∇p′

]
− g(ρ̄ + ρ′)

ρ0
k.

Subtracting the hydrostatic state (14.3), this becomes

− 1
ρ0

∇p − gρ

ρ0
k = − 1

ρ0
∇p′ − gρ′

ρ0
k,

which shows that we can replace p and ρ in equation (14.2) by the perturbation
quantities p′ and ρ′.

Formulation of the Frictional Term

The friction force per unit mass F in equation (14.2) needs to be related to the velocity
field. From Chapter 4, Section 7, the friction force is given by

Fi = ∂τij

∂xj
,

where τij is the viscous stress tensor. The stress in a laminar flow is caused by the
molecular exchanges of momentum. From equation (4.41), the viscous stress tensor
in an isotropic incompressible medium in laminar flow is given by

τij = ρν

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

In large-scale geophysical flows, however, the frictional forces are provided by turbu-
lent mixing, and the molecular exchanges are negligible. The complexity of turbulent
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behavior makes it impossible to relate the stress to the velocity field in a simple way.
To proceed, then, we adopt the eddy viscosity hypothesis, assuming that the turbulent
stress is proportional to the velocity gradient field.

Geophysical media are in the form of shallow stratified layers, in which the
vertical velocities are much smaller than horizontal velocities. This means that the
exchange of momentum across a horizontal surface is much weaker than that across a
vertical surface. We expect then that the vertical eddy viscosity νv is much smaller than
the horizontal eddy viscosity νH, and we assume that the turbulent stress components
have the form

τxz = τzx = ρνv
∂u

∂z
+ ρνH

∂w

∂x
,

τyz = τzy = ρνv
∂v

∂z
+ ρνH

∂w

∂y
,

τxy = τyx = ρνH

(
∂u

∂y
+ ∂v

∂x

)
,

τxx = 2ρνH
∂u

∂x
, τyy = 2ρνH

∂v

∂y
, τzz = 2ρνv

∂w

∂z
.

(14.5)

The difficulty with set (14.5) is that the expressions for τxz and τyz depend on the fluid
rotation in the vertical plane and not just the deformation. In Chapter 4, Section 10,
we saw that a requirement for a constitutive equation is that the stresses should be
independent of fluid rotation and should depend only on the deformation. There-
fore, τxz should depend only on the combination (∂u/∂z + ∂w/∂x), whereas the
expression in equation (14.5) depends on both deformation and rotation. A tensori-
ally correct geophysical treatment of the frictional terms is discussed, for example,
in Kamenkovich (1967). However, the assumed form (14.5) leads to a simple formu-
lation for viscous effects, as we shall see shortly. As the eddy viscosity assumption is
of questionable validity (which Pedlosky (1971) describes as a “rather disreputable
and desperate attempt”), there does not seem to be any purpose in formulating the
stress–strain relation in more complicated ways merely to obey the requirement of
invariance with respect to rotation.

With the assumed form for the turbulent stress, the components of the frictional
force Fi = ∂τij /∂xj become

Fx = ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= νH

(
∂2u

∂x2 + ∂2u

∂y2

)
+ νv

∂2u

∂z2 ,

Fy = ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
= νH

(
∂2v

∂x2 + ∂2v

∂y2

)
+ νv

∂2v

∂z2 ,

Fz = ∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z
= νH

(
∂2w

∂x2 + ∂2w

∂y2

)
+ νv

∂2w

∂z2 .

(14.6)

Estimates of the eddy coefficients vary greatly. Typical suggested values are
νv ∼ 10 m2/s and νH ∼ 105 m2/s for the lower atmosphere, and νv ∼ 0.01 m2/s
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and νH ∼ 100 m2/s for the upper ocean. In comparison, the molecular values are
ν = 1.5 × 10−5 m2/s for air and ν = 10−6 m2/s for water.

4. Approximate Equations for a Thin Layer on
a Rotating Sphere

The atmosphere and the ocean are very thin layers in which the depth scale of flow
is a few kilometers, whereas the horizontal scale is of the order of hundreds, or even
thousands, of kilometers. The trajectories of fluid elements are very shallow and
the vertical velocities are much smaller than the horizontal velocities. In fact, the
continuity equation suggests that the scale of the vertical velocity W is related to that
of the horizontal velocity U by

W

U
∼ H

L
,

where H is the depth scale and L is the horizontal length scale. Stratification and
Coriolis effects usually constrain the vertical velocity to be even smaller than UH/L.

Large-scale geophysical flow problems should be solved using spherical polar
coordinates. If, however, the horizontal length scales are much smaller than the radius
of the earth (= 6371 km), then the curvature of the earth can be ignored, and the
motion can be studied by adopting a local Cartesian system on a tangent plane
(Figure 14.3). On this plane we take an xyz coordinate system, with x increasing
eastward, y northward, and z upward. The corresponding velocity components are u

(eastward), v (northward), and w (upward).

Figure 14.3 Local Cartesian coordinates. The x-axis is into the plane of the paper.
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The earth rotates at a rate

) = 2π rad/day = 0.73 × 10−4 s−1,

around the polar axis, in a counterclockwise sense looking from above the north
pole. From Figure 14.3, the components of angular velocity of the earth in the local
Cartesian system are

)x = 0,

)y = ) cos θ,

)z = ) sin θ,

where θ is the latitude. The Coriolis force is therefore

2! × u =

∣∣∣∣∣∣

i j k
0 2) cos θ 2) sin θ

u v w

∣∣∣∣∣∣

= 2)[i(w cos θ − v sin θ) + ju sin θ − ku cos θ ].

In the term multiplied by i we can use the condition w cos θ ≪ v sin θ , because the
thin sheet approximation requires that w ≪ v. The three components of the Coriolis
force are therefore

(2! × u)x = −(2) sin θ)v = −f v,

(2! × u)y = (2) sin θ)u = f u,

(2! × u)z = −(2) cos θ)u,

(14.7)

where we have defined

f = 2) sin θ , (14.8)

to be twice the vertical component of !. As vorticity is twice the angular veloc-
ity, f is called the planetary vorticity. More commonly, f is referred to as the
Coriolis parameter, or the Coriolis frequency. It is positive in the northern hemi-
sphere and negative in the southern hemisphere, varying from ±1.45 × 10−4 s−1 at
the poles to zero at the equator. This makes sense, since a person standing at the
north pole spins around himself in an counterclockwise sense at a rate ), whereas
a person standing at the equator does not spin around himself but simply translates.
The quantity

Ti = 2π/f,

is called the inertial period, for reasons that will be clear in Section 11.
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The vertical component of the Coriolis force, namely −2)u cos θ , is generally
negligible compared to the dominant terms in the vertical equation of motion, namely
gρ′/ρ0 and ρ−1

0 (∂p′/∂z). Using equations (14.6) and (14.7), the equations of motion
(14.2) reduce to

Du

Dt
− f v = − 1

ρ0

∂p

∂x
+ νH

(
∂2u

∂x2 + ∂2u

∂y2

)
+ νv

∂2u

∂z2 ,

Dv

Dt
+ f u = − 1

ρ0

∂p

∂y
+ νH

(
∂2v

∂x2 + ∂2v

∂y2

)
+ νv

∂2v

∂z2 ,

Dw

Dt
= − 1

ρ0

∂p

∂z
− gρ

ρ0
+ νH

(
∂2w

∂x2 + ∂2w

∂y2

)
+ νv

∂2w

∂z2 .

(14.9)

These are the equations of motion for a thin shell on a rotating earth. Note that only
the vertical component of the earth’s angular velocity appears as a consequence of the
flatness of the fluid trajectories.

f -Plane Model

The Coriolis parameter f = 2) sin θ varies with latitude θ . However, we shall see
later that this variation is important only for phenomena having very long time scales
(several weeks) or very long length scales (thousands of kilometers). For many pur-
poses we can assume f to be a constant, say f0 = 2) sin θ0, where θ0 is the central
latitude of the region under study. A model using a constant Coriolis parameter is
called an f-plane model.

β-Plane Model

The variation of f with latitude can be approximately represented by expanding f in
a Taylor series about the central latitude θ0:

f = f0 + βy, (14.10)

where we defined

β ≡
(

df

dy

)

θ0

=
(

df

dθ

dθ

dy

)

θ0

= 2) cos θ0

R
.

Here, we have used f = 2) sin θ and dθ/dy = 1/R, where the radius of the earth is
nearly

R = 6371 km.

A model that takes into account the variation of the Coriolis parameter in the simplified
form f = f0 + βy, with β as constant, is called a β-plane model.
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5. Geostrophic Flow
Consider quasi-steady large-scale motions in the atmosphere or the ocean, away from
boundaries. For these flows an excellent approximation for the horizontal equilibrium
is a balance between the Coriolis force and the pressure gradient:

−f v = − 1
ρ0

∂p

∂x
,

f u = − 1
ρ0

∂p

∂y
.

(14.11)

Here we have neglected the nonlinear acceleration terms, which are of order U2/L,
in comparison to the Coriolis force ∼f U (U is the horizontal velocity scale, and L

is the horizontal length scale.) The ratio of the nonlinear term to the Coriolis term is
called the Rossby number :

Rossby number = Nonlinear acceleration
Coriolis force

∼ U2/L

f U
= U

f L
= Ro.

For a typical atmospheric value of U ∼ 10 m/s, f ∼ 10−4 s−1, and L ∼ 1000 km,
the Rossby number turns out to be 0.1. The Rossby number is even smaller for many
flows in the ocean, so that the neglect of nonlinear terms is justified for many flows.

The balance of forces represented by equation (14.11), in which the horizontal
pressure gradients are balanced by Coriolis forces, is called a geostrophic balance. In
such a system the velocity distribution can be determined from a measured distribu-
tion of the pressure field. The geostrophic equilibrium breaks down near the equator
(within a latitude belt of ±3◦), where f becomes small. It also breaks down if the
frictional effects or unsteadiness become important.

Velocities in a geostrophic flow are perpendicular to the horizontal pressure
gradient. This is because equation (14.11) implies that v • ∇p = 0, i.e., . . .

(iu + jv) • ∇p = 1
ρ0f

(
−i

∂p

∂y
+ j

∂p

∂x

)
•

(
i
∂p

∂x
+ j

∂p

∂y

)
= 0.

Thus, the horizontal velocity is along, and not across, the lines of constant pressure.
If f is regarded as constant, then the geostrophic balance (14.11) shows that p/fρ0
can be regarded as a streamfunction. The isobars on a weather map are therefore
nearly the streamlines of the flow.

Figure 14.4 shows the geostrophic flow around low and high pressure centers
in the northern hemisphere. Here the Coriolis force acts to the right of the velocity
vector. This requires the flow to be counterclockwise (viewed from above) around
a low pressure region and clockwise around a high pressure region. The sense of
circulation is opposite in the southern hemisphere, where the Coriolis force acts to
the left of the velocity vector. (Frictional forces become important at lower levels in
the atmosphere and result in a flow partially across the isobars. This will be discussed
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Figure 14.4 Geostrophic flow around low and high pressure centers. The pressure force (−∇p) is
indicated by a thin arrow, and the Coriolis force is indicated by a thick arrow.

in Section 7, where we will see that the flow around a low pressure center spirals
inward due to frictional effects.)

The flow along isobars at first surprises a reader unfamiliar with the effects
of the Coriolis force. A question commonly asked is: How is such a motion set up?
A typical manner of establishment of such a flow is as follows. Consider a horizontally
converging flow in the surface layer of the ocean. The convergent flow sets up the
sea surface in the form of a gentle “hill,” with the sea surface dropping away from
the center of the hill. A fluid particle starting to move down the “hill” is deflected to
the right in the northern hemisphere, and a steady state is reached when the particle
finally moves along the isobars.

Thermal Wind

In the presence of a horizontal gradient of density, the geostrophic velocity develops
a vertical shear. This is easy to demonstrate from an analysis of the geostrophic and
hydrostatic balance

−f v = − 1
ρ0

∂p

∂x
, (14.12)

f u = − 1
ρ0

∂p

∂y
, (14.13)

0 = −∂p

∂z
− gρ . (14.14)
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Eliminating p between equations (14.12) and (14.14), and also between equations
(14.13) and (14.14), we obtain, respectively,

∂v

∂z
= − g

ρ0f

∂ρ

∂x
,

∂u

∂z
= g

ρ0f

∂ρ

∂y
.

(14.15)

Meteorologists call these the thermal wind equations because they give the verti-
cal variation of wind from measurements of horizontal temperature gradients. The
thermal wind is a baroclinic phenomenon, because the surfaces of constant p and ρ

do not coincide.

Taylor–Proudman Theorem

A striking phenomenon occurs in the geostrophic flow of a homogeneous fluid. It can
only be observed in a laboratory experiment because stratification effects cannot be
avoided in natural flows. Consider then a laboratory experiment in which a tank of
fluid is steadily rotated at a high angular speed ) and a solid body is moved slowly
along the bottom of the tank. The purpose of making ) large and the movement of
the solid body slow is to make the Coriolis force much larger than the acceleration
terms, which must be made negligible for geostrophic equilibrium. Away from the
frictional effects of boundaries, the balance is therefore geostrophic in the horizontal
and hydrostatic in the vertical:

−2)v = − 1
ρ

∂p

∂x
, (14.16)

2)u = − 1
ρ

∂p

∂y
, (14.17)

0 = − 1
ρ

∂p

∂z
− g. (14.18)

It is useful to define an Ekman number as the ratio of viscous to Coriolis forces
(per unit volume):

Ekman number = viscous force
Coriolis force

= ρνU/L2

ρf U
= ν

f L2 = E.

Under the circumstances already described here, both Ro and E are small.
Elimination of p by cross differentiation between the horizontal momentum

equations gives

2)

(
∂v

∂y
+ ∂u

∂x

)
= 0.
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Using the continuity equation, this gives

∂w

∂z
= 0. (14.19)

Also, differentiating equations (14.16) and (14.17) with respect to z, and using
equation (14.18), we obtain

∂v

∂z
= ∂u

∂z
= 0. (14.20)

Equations (14.19) and (14.20) show that

∂u
∂z

= 0, (14.21)

showing that the velocity vector cannot vary in the direction of !. In other words,
steady slow motions in a rotating, homogeneous, inviscid fluid are two dimensional.
This is the Taylor–Proudman theorem, first derived by Proudman in 1916 and demon-
strated experimentally by Taylor soon afterwards.

In Taylor’s experiment, a tank was made to rotate as a solid body, and a small
cylinder was slowly dragged along the bottom of the tank (Figure 14.5). Dye was
introduced from point A above the cylinder and directly ahead of it. In a nonrotat-
ing fluid the water would pass over the top of the moving cylinder. In the rotating
experiment, however, the dye divides at a point S, as if it had been blocked by an
upward extension of the cylinder, and flows around this imaginary cylinder, called
the Taylor column. Dye released from a point B within the Taylor column remained
there and moved with the cylinder. The conclusion was that the flow outside the
upward extension of the cylinder is the same as if the cylinder extended across the
entire water depth and that a column of water directly above the cylinder moves with
it. The motion is two dimensional, although the solid body does not extend across
the entire water depth. Taylor did a second experiment, in which he dragged a solid
body parallel to the axis of rotation. In accordance with ∂w/∂z = 0, he observed
that a column of fluid is pushed ahead. The lateral velocity components u and v

were zero. In both of these experiments, there are shear layers at the edge of the
Taylor column.

In summary, Taylor’s experiment established the following striking fact for steady
inviscid motion of homogeneous fluid in a strongly rotating system: Bodies moving
either parallel or perpendicular to the axis of rotation carry along with their motion
a so-called Taylor column of fluid, oriented parallel to the axis. The phenomenon is
analogous to the horizontal blocking caused by a solid body (say a mountain) in a
strongly stratified system, shown in Figure 7.33.
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Figure 14.5 Taylor’s experiment in a strongly rotating flow of a homogeneous fluid.

6. Ekman Layer at a Free Surface
In the preceding section, we discussed a steady linear inviscid motion expected to be
valid away from frictional boundary layers. We shall now examine the motion within
frictional layers over horizontal surfaces. In viscous flows unaffected by Coriolis
forces and pressure gradients, the only term which can balance the viscous force is
either the time derivative ∂u/∂t or the advection u •∇u. The balance of ∂u/∂t and
the viscous force gives rise to a viscous layer whose thickness increases with time,
as in the suddenly accelerated plate discussed in Chapter 9, Section 7. The balance
of u • ∇u and the viscous force give rise to a viscous layer whose thickness increases
in the direction of flow, as in the boundary layer over a semi-infinite plate discussed
in Chapter 10, Sections 5 and 6. In a rotating flow, however, we can have a balance
between the Coriolis and the viscous forces, and the thickness of the viscous layer
can be invariant in time and space. Two examples of such layers are given in this and
the following sections.
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Consider first the case of a frictional layer near the free surface of the ocean,
which is acted on by a wind stress τ in the x-direction. We shall not consider how
the flow adjusts to the steady state but examine only the steady solution. We shall
assume that the horizontal pressure gradients are zero and that the field is horizontally
homogeneous. From equation (14.9), the horizontal equations of motion are

−f v = νv
d2u

dz2 , (14.22)

f u = νv
d2v

dz2 . (14.23)

Taking the z-axis vertically upward from the surface of the ocean, the boundary
conditions are

ρνv
du

dz
= τ at z = 0, (14.24)

dv

dz
= 0 at z = 0, (14.25)

u, v → 0 as z → −∞. (14.26)

Multiplying equation (14.23) by i =
√

−1 and adding equation (14.22), we obtain

d2V

dz2 = if

νv
V, (14.27)

where we have defined the “complex velocity”

V ≡ u + iv.

The solution of equation (14.27) is

V = A e(1+i)z/δ + B e−(1+i)z/δ, (14.28)

where we have defined

δ ≡
√

2 νv

f
. (14.29)

We shall see shortly that δ is the thickness of the Ekman layer. The constant B

is zero because the field must remain finite as z → −∞. The surface boundary
conditions (14.24) and (14.25) can be combined as ρνv(dV/dz) = τ at z = 0, from
which equation (14.28) gives



6. Ekman Layer at a Free Surface 619

A = τδ(1 − i)

2ρνv
.

Substitution of this into equation (14.28) gives the velocity components

u = τ/ρ√
f νv

ez/δ cos
(
−z

δ
+ π

4

)
,

v = − τ/ρ√
f νv

ez/δ sin
(
−z

δ
+ π

4

)
.

The Swedish oceanographer Ekman worked out this solution in 1905. The solu-
tion is shown in Figure 14.6 for the case of the northern hemisphere, in which f

is positive. The velocities at various depths are plotted in Figure 14.6a, where each
arrow represents the velocity vector at a certain depth. Such a plot of v vs u is some-
times called a “hodograph” plot. The vertical distributions of u and v are shown
in Figure 14.6b. The hodograph shows that the surface velocity is deflected 45◦ to
the right of the applied wind stress. (In the southern hemisphere the deflection is to
the left of the surface stress.) The velocity vector rotates clockwise (looking down)
with depth, and the magnitude exponentially decays with an e-folding scale of δ,
which is called the Ekman layer thickness. The tips of the velocity vector at various
depths form a spiral, called the Ekman spiral.

Figure 14.6 Ekman layer at a free surface. The left panel shows velocity at various depths; values of
−z/δ are indicated along the curve traced out by the tip of the velocity vectors. The right panel shows
vertical distributions of u and v.
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The components of the volume transport in the Ekman layer are

∫ 0

−∞
u dz = 0,

∫ 0

−∞
v dz = − τ

ρf
.

(14.30)

This shows that the net transport is to the right of the applied stress and is independent
of νv. In fact, the result

∫
v dz = −τ/fρ follows directly from a vertical integration of

the equation of motion in the form −ρf v = d(stress)/dz, so that the result does not
depend on the eddy viscosity assumption. The fact that the transport is to the right of
the applied stress makes sense, because then the net (depth-integrated) Coriolis force,
directed to the right of the depth-integrated transport, can balance the wind stress.

The horizontal uniformity assumed in the solution is not a serious limitation.
Since Ekman layers near the ocean surface have a thickness (∼50 m) much smaller
than the scale of horizontal variation (L > 100 km), the solution is still locally appli-
cable. The absence of horizontal pressure gradient assumed here can also be relaxed
easily. Because of the thinness of the layer, any imposed horizontal pressure gradient
remains constant across the layer. The presence of a horizontal pressure gradient
merely adds a depth-independent geostrophic velocity to the Ekman solution. Suppose
the sea surface slopes down to the north, so that there is a pressure force acting north-
ward throughout the Ekman layer and below (Figure 14.7). This means that at the
bottom of the Ekman layer (z/δ → −∞) there is a geostrophic velocity U to the
right of the pressure force. The surface Ekman spiral forced by the wind stress joins
smoothly to this geostrophic velocity as z/δ → −∞.

Figure 14.7 Ekman layer at a free surface in the presence of a pressure gradient. The geostrophic velocity
forced by the pressure gradient is U .
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Pure Ekman spirals are not observed in the surface layer of the ocean, mainly
because the assumptions of constant eddy viscosity and steadiness are particularly
restrictive. When the flow is averaged over a few days, however, several instances
have been found in which the current does look like a spiral. One such example is
shown in Figure 14.8.

Figure 14.8 An observed velocity distribution near the coast of Oregon. Velocity is averaged over 7 days.
Wind stress had a magnitude of 1.1 dyn/cm2 and was directed nearly southward, as indicated at the top of
the figure. The upper panel shows vertical distributions of u and v, and the lower panel shows the hodograph
in which depths are indicated in meters. The hodograph is similar to that of a surface Ekman layer (of
depth 16 m) lying over the bottom Ekman layer (extending from a depth of 16 m to the ocean bottom).
P. Kundu, in Bottom Tubulence, J. C. J. Nihoul, ed., Elsevier, 1977 and reprinted with the permission of
Jacques C. J. Nihoul.
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Explanation in Terms of Vortex Tilting

We have seen in previous chapters that the thickness of a viscous layer usually grows
in a nonrotating flow, either in time or in the direction of flow. The Ekman solution,
in contrast, results in a viscous layer that does not grow either in time or space. This
can be explained by examining the vorticity equation (Pedlosky, 1987). The vorticity
components in the x- and y-directions are

ωx = ∂w

∂y
− ∂v

∂z
= −dv

dz
,

ωy = ∂u

∂z
− ∂w

∂x
= du

dz
,

where we have used w = 0. Using these, the z-derivative of the equations of motion
(14.22) and (14.23) gives

−f
dv

dz
= νv

d2ωy

dz2 ,

−f
du

dz
= νv

d2ωx

dz2 .

(14.31)

The right-hand side of these equations represent diffusion of vorticity. Without
Coriolis forces this diffusion would cause a thickening of the viscous layer. The
presence of planetary rotation, however, means that vertical fluid lines coincide with
the planetary vortex lines. The tilting of vertical fluid lines, represented by terms on
the left-hand sides of equations (14.31), then causes a rate of change of horizontal
component of vorticity that just cancels the diffusion term.

7. Ekman Layer on a Rigid Surface
Consider now a horizontally independent and steady viscous layer on a solid surface
in a rotating flow. This can be the atmospheric boundary layer over the solid earth or
the boundary layer over the ocean bottom. We assume that at large distances from the
surface the velocity is toward the x-direction and has a magnitude U . Viscous forces
are negligible far from the wall, so that the Coriolis force can be balanced only by a
pressure gradient:

f U = − 1
ρ

dp

dy
. (14.32)

This simply states that the flow outside the viscous layer is in geostrophic balance,
U being the geostrophic velocity. For our assumed case of positive U and f , we
must have dp/dy < 0, so that the pressure falls with y—that is, the pressure force is
directed along the positive y direction, resulting in a geostrophic flow U to the right
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of the pressure force in the northern hemisphere. The horizontal pressure gradient
remains constant within the thin boundary layer.

Near the solid surface the viscous forces are important, so that the balance within
the boundary layer is

−f v = νv
d2u

dz2 , (14.33)

f u = νv
d2v

dz2 + f U, (14.34)

where we have replaced −ρ−1(dp/dy) by f U in accordance with equation (14.32).
The boundary conditions are

u = U, v = 0 as z → ∞, (14.35)

u = 0, v = 0 at z = 0, (14.36)

where z is taken vertically upward from the solid surface. Multiplying equation (14.34)
by i and adding equation (14.33), the equations of motion become

d2V

dz2 = if

νv
(V − U), (14.37)

where we have defined the complex velocity V ≡ u + iv. The boundary
conditions (14.35) and (14.36) in terms of the complex velocity are

V = U as z → ∞, (14.38)

V = 0 at z = 0. (14.39)

The particular solution of equation (14.37) is V = U . The total solution is, therefore,

V = A e−(1+i)z/δ + B e(1+i)z/δ + U, (14.40)

where δ ≡ √
2νv/f . To satisfy equation (14.38), we must have B = 0. Condition

(14.39) gives A = −U . The velocity components then become

u = U [1 − e−z/δ cos (z/δ)],

v = Ue−z/δ sin (z/δ).
(14.41)

According to equation (14.41), the tip of the velocity vector describes a spiral for
various values of z (Figure 14.9a). As with the Ekman layer at a free surface, the
frictional effects are confined within a layer of thickness δ = √

2νv/f , which increases
with νv and decreases with the rotation rate f . Interestingly, the layer thickness is
independent of the magnitude of the free-stream velocity U ; this behavior is quite
different from that of a steady nonrotating boundary layer on a semi-infinite plate (the
Blasius solution of Section 10.5) in which the thickness is proportional to 1/

√
U .
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Figure 14.9 Ekman layer at a rigid surface. The left panel shows velocity vectors at various heights;
values of z/δ are indicated along the curve traced out by the tip of the velocity vectors. The right panel
shows vertical distributions of u and v.

Figure 14.9b shows the vertical distribution of the velocity components. Far from
the wall the velocity is entirely in the x-direction, and the Coriolis force balances the
pressure gradient. As the wall is approached, retarding effects decrease u and the
associated Coriolis force, so that the pressure gradient (which is independent of z)
forces a component v in the direction of the pressure force. Using equation (14.41),
the net transport in the Ekman layer normal to the uniform stream outside the layer is

∫ ∞

0
v dz = U

[
νv

2f

]1/2

= 1
2
Uδ,

which is directed to the left of the free-stream velocity, in the direction of the pressure
force.

If the atmosphere were in laminar motion, νv would be equal to its molecular
value for air, and the Ekman layer thickness at a latitude of 45◦ (where f ≃ 10−4 s−1)
would be ≈ δ ∼ 0.4 m. The observed thickness of the atmospheric boundary layer
is of order 1 km, which implies an eddy viscosity of order νv ∼ 50 m2/s. In fact,
Taylor (1915) tried to estimate the eddy viscosity by matching the predicted velocity
distributions (14.41) with the observed wind at various heights.

The Ekman layer solution on a solid surface demonstrates that the three-way
balance among the Coriolis force, the pressure force, and the frictional force within
the boundary layer results in a component of flow directed toward the lower pressure.
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Figure 14.10 Balance of forces within an Ekman layer, showing that velocity u has a component toward
low pressure.

The balance of forces within the boundary layer is illustrated in Figure 14.10. The
net frictional force on an element is oriented approximately opposite to the velocity
vector u. It is clear that a balance of forces is possible only if the velocity vector has a
component from high to low pressure, as shown. Frictional forces therefore cause the
flow around a low-pressure center to spiral inward. Mass conservation requires that
the inward converging flow should rise over a low-pressure system, resulting in cloud
formation and rainfall. This is what happens in a cyclone, which is a low-pressure
system. In contrast, over a high-pressure system the air sinks as it spirals outward
due to frictional effects. The arrival of high-pressure systems therefore brings in clear
skies and fair weather, because the sinking air does not result in cloud formation.

Frictional effects, in particular the Ekman transport by surface winds, play a
fundamental role in the theory of wind-driven ocean circulation. Possibly the most
important result of such theories was given by Henry Stommel in 1948. He showed
that the northward increase of the Coriolis parameter f is responsible for making the
currents along the western boundary of the ocean (e.g., the Gulf Stream in the Atlantic
and the Kuroshio in the Pacific) much stronger than the currents on the eastern side.
These are discussed in books on physical oceanography and will not be presented
here. Instead, we shall now turn our attention to the influence of Coriolis forces on
inviscid wave motions.

8. Shallow-Water Equations
Both surface and internal gravity waves were discussed in Chapter 7. The effect
of planetary rotation was assumed to be small, which is valid if the frequency ω

of the wave is much larger than the Coriolis parameter f . In this chapter we are
considering phenomena slow enough for ω to be comparable to f . Consider surface
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gravity waves on a shallow layer of homogeneous fluid whose mean depth is H . If we
restrict ourselves to wavelengths λ much larger than H , then the vertical velocities
are much smaller than the horizontal velocities. In Chapter 7, Section 6 we saw that
the acceleration ∂w/∂t is then negligible in the vertical momentum equation, so that
the pressure distribution is hydrostatic. We also demonstrated that the fluid particles
execute a horizontal rectilinear motion that is independent of z. When the effects
of planetary rotation are included, the horizontal velocity is still depth-independent,
although the particle orbits are no longer rectilinear but elliptic on a horizontal plane,
as we shall see in the following section.

Consider a layer of fluid over a flat horizontal bottom (Figure 14.11). Let z be
measured upward from the bottom surface, and η be the displacement of the free
surface. The pressure at height z from the bottom, which is hydrostatic, is given by

p = ρg(H + η − z).

The horizontal pressure gradients are therefore

∂p

∂x
= ρg

∂η

∂x
,

∂p

∂y
= ρg

∂η

∂y
. (14.42)

As these are independent of z, the resulting horizontal motion is also depth
independent.

Now consider the continuity equation

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0.

As ∂u/∂x and ∂v/∂y are independent of z, the continuity equation requires that w

vary linearly with z, from zero at the bottom to the maximum value at the free surface.
Integrating vertically across the water column from z = 0 to z = H + η, and noting
that u and v are depth independent, we obtain

(H + η)
∂u

∂x
+ (H + η)

∂v

∂y
+ w(η) − w(0) = 0, (14.43)

Figure 14.11 Layer of fluid on a flat bottom.
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where w(η) is the vertical velocity at the surface and w(0) = 0 is the vertical velocity
at the bottom. The surface velocity is given by

w(η) = Dη

Dt
= ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
.

The continuity equation (14.43) then becomes

(H + η)
∂u

∂x
+ (H + η)

∂v

∂y
+ ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= 0,

which can be written as

∂η

∂t
+ ∂

∂x
[u(H + η)] + ∂

∂y
[v(H + η)] = 0. (14.44)

This says simply that the divergence of the horizontal transport depresses the free
surface. For small amplitude waves, the quadratic nonlinear terms can be neglected
in comparison to the linear terms, so that the divergence term in equation (14.44)
simplifies to H∇ • u.

The linearized continuity and momentum equations are then

∂η

∂t
+ H

(
∂u

∂x
+ ∂v

∂y

)
= 0,

∂u

∂t
− f v = −g

∂η

∂x
,

∂v

∂t
+ f u = −g

∂η

∂y
.

(14.45)

In the momentum equations of (14.45), the pressure gradient terms are written in the
form (14.42) and the nonlinear advective terms have been neglected under the small
amplitude assumption. Equations (14.45), called the shallow water equations, govern
the motion of a layer of fluid in which the horizontal scale is much larger than the
depth of the layer. These equations will be used in the following sections for studying
various types of gravity waves.

Although the preceding analysis has been formulated for a layer of homogeneous
fluid, equations (14.45) are applicable to internal waves in a stratified medium, if we
replaced H by the equivalent depth He, defined by

c2 = gHe, (14.46)

where c is the speed of long nonrotating internal gravity waves. This will be demon-
strated in the following section.
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9. Normal Modes in a Continuously Stratified Layer
In the preceding section we considered a homogeneous medium and derived the
governing equations for waves of wavelength larger than the depth of the fluid layer.
Now consider a continuously stratified medium and assume that the horizontal scale
of motion is much larger than the vertical scale. The pressure distribution is therefore
hydrostatic, and the equations of motion are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (14.47)

∂u

∂t
− f v = − 1

ρ0

∂p

∂x
, (14.48)

∂v

∂t
+ f u = − 1

ρ0

∂p

∂y
, (14.49)

0 = −∂p

∂z
− gρ, (14.50)

∂ρ

∂t
− ρ0N

2

g
w = 0, (14.51)

where p and ρ represent perturbations of pressure and density from the state of
rest. The advective term in the density equation is written in the linearized form
w(dρ̄/dz) = −ρ0N

2w/g, where N(z) is the buoyancy frequency. In this form the
rate of change of density at a point is assumed to be due only to the vertical advection
of the background density distribution ρ̄(z), as discussed in Chapter 7, Section 18.

In a continuously stratified medium, it is convenient to use the method of separa-
tion of variables and write q = ∑

qn(x, y, t)ψn(z) for some variable q. The solution
is thus written as the sum of various vertical “modes,” which are called normal modes
because they turn out to be orthogonal to each other. The vertical structure of a mode is
described by ψn and qn describes the horizontal propagation of the mode. Although
each mode propagates only horizontally, the sum of a number of modes can also
propagate vertically if the various qn are out of phase.

We assume separable solutions of the form

[u, v, p/ρ0] =
∞∑

n=0

[un, vn, pn]ψn(z), (14.52)

w =
∞∑

n=0

wn

∫ z

−H
ψn(z) dz, (14.53)

ρ =
∞∑

n=0

ρn
dψn

dz
, (14.54)
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where the amplitudes un, vn, pn, wn, and ρn are functions of (x, y, t). The z-axis
is measured from the upper free surface of the fluid layer, and z = −H represents
the bottom wall. The reasons for assuming the various forms of z-dependence in
equations (14.52)–(14.54) are the following: Variables u, v, and p have the same
vertical structure in order to be consistent with equations (14.48) and (14.49). Con-
tinuity equation (14.47) requires that the vertical structure of w should be the inte-
gral of ψn(z). Equation (14.50) requires that the vertical structure of ρ must be the
z-derivative of the vertical structure of p.

Subsititution of equations (14.53) and (14.54) into equation (14.51) gives

∞∑

n=0

[
∂ρn

∂t

dψn

dz
− ρ0N

2

g
wn

∫ z

−H
ψn dz

]
= 0.

This is valid for all values of z, and the modes are linearly independent, so the quantity
within [ ] must vanish for each mode. This gives

dψn/dz

N2
∫ z
−H ψn dz

= ρ0

g

wn

∂ρn/∂t
≡ − 1

c2
n

. (14.55)

As the first term is a function of z alone and the second term is a function of (x, y, t)

alone, for consistency both terms must be equal to a constant; we take the “separation
constant” to be −1/c2

n. The vertical structure is then given by

1
N2

dψn

dz
= − 1

c2
n

∫ z

−H
ψn dz.

Taking the z-derivative,

d

dz

(
1

N2

dψn

dz

)
+ 1

c2
n

ψn = 0, (14.56)

which is the differential equation governing the vertical structure of the normal modes.
Equation (14.56) has the so-called Sturm–Liouville form, for which the various solu-
tions are orthogonal.

Equation (14.55) also gives

wn = − g

ρ0c2
n

∂ρn

∂t
.

Substitution of equations (14.52)–(14.54) into equations (14.47)–(14.51) finally gives
the normal mode equations

∂un

∂x
+ ∂vn

∂y
+ 1

c2
n

∂pn

∂t
= 0, (14.57)
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∂un

∂t
− f vn = −∂pn

∂x
, (14.58)

∂vn

∂t
+ f un = −∂pn

∂y
, (14.59)

pn = − g

ρ0
ρn, (14.60)

wn = 1
c2
n

∂pn

∂t
. (14.61)

Once equations (14.57)–(14.59) have been solved for un, vn and pn, the amplitudes ρn

and wn can be obtained from equations (14.60) and (14.61). The set (14.57)–(14.59)
is identical to the set (14.45) governing the motion of a homogeneous layer, provided
pn is identified with gη and c2

n is identified with gH . In a stratified flow each mode
(having a fixed vertical structure) behaves, in the horizontal dimensions and in time,
just like a homogeneous layer, with an equivalent depth He defined by

c2
n ≡ gHe. (14.62)

Boundary Conditions on ψn

At the layer bottom, the boundary condition is

w = 0 at z = −H.

To write this condition in terms of ψn, we first combine the hydrostatic equation
(14.50) and the density equation (14.51) to give w in terms of p:

w = g(∂ρ/∂t)

ρ0N2 = − 1
ρ0N2

∂2p

∂z ∂t
= − 1

N2

∞∑

n=0

∂pn

∂t

dψn

dz
. (14.63)

The requirement w = 0 then yields the bottom boundary condition

dψn

dz
= 0 at z = −H. (14.64)

We now formulate the surface boundary condition. The linearized surface
boundary conditions are

w = ∂η

∂t
, p = ρ0gη at z = 0, (14.65′)
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where η is the free surface displacement. These conditions can be combined into

∂p

∂t
= ρ0gw at z = 0.

Using equation (14.63) this becomes

g

N2

∂2p

∂z ∂t
+ ∂p

∂t
= 0 at z = 0.

Substitution of the normal mode decomposition (14.52) gives

dψn

dz
+ N2

g
ψn = 0 at z = 0. (14.65)

The boundary conditions on ψn are therefore equations (14.64) and (14.65).

Solution of Vertical Modes for Uniform N

For a medium of uniform N , a simple solution can be found for ψn. From equa-
tions (14.56), (14.64), and (14.65), the vertical structure of the normal modes is
given by

d2ψn

dz2 + N2

c2
n

ψn = 0, (14.66)

with the boundary conditions

dψn

dz
+ N2

g
ψn = 0 at z = 0, (14.67)

dψn

dz
= 0 at z = −H. (14.68)

The set (14.66)–(14.68) defines an eigenvalue problem, with ψn as the eigenfunction
and cn as the eigenvalue. The solution of equation (14.66) is

ψn = An cos
Nz

cn
+ Bn sin

Nz

cn
. (14.69)

Application of the surface boundary condition (14.67) gives

Bn = −cnN

g
An.

The bottom boundary condition (14.68) then gives

tan
NH

cn
= cnN

g
, (14.70)

whose roots define the eigenvalues of the problem.
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Figure 14.12 Calculation of eigenvalues cn of vertical normal modes in a fluid layer of depth H and
uniform stratification N .

The solution of equation (14.70) is indicated graphically in Figure 14.12. The
first root occurs for NH/cn ≪ 1, for which we can write tan(NH/cn) ≃ NH/cn,
so that equation (14.70) gives (indicating this root by n = 0)

c0 =
√

gH.

The vertical modal structure is found from equation (14.69). Because the magnitude
of an eigenfunction is arbitrary, we can set A0 = 1, obtaining

ψ0 = cos
Nz

c0
− c0N

g
sin

Nz

c0
≃ 1 − N2z

g
≃ 1,

where we have used N |z|/c0 ≪ 1 (with NH/c0 ≪ 1), and N2z/g ≪ 1 (with
N2H/g = (NH/c0)(c0N/g) ≪ 1, both sides of equation (14.70) being much less
than 1). For this mode the vertical structure of u, v, and p is therefore nearly
depth-independent. The corresponding structure for w (given by

∫
ψ0 dz, as indi-

cated in equation (14.53)) is linear in z, with zero at the bottom and a maximum at the
upper free surface. A stratified medium therefore has a mode of motion that behaves
like that in an unstratified medium; this mode does not feel the stratification. The
n = 0 mode is called the barotropic mode.

The remaining modes n ! 1 are baroclinic. For these modes cnN/g ≪ 1 but
NH/cn is not small, as can be seen in Figure 14.12, so that the baroclinic roots of
equation (14.70) are nearly given by

tan
NH

cn
= 0,
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which gives

cn = NH

nπ
, n = 1, 2, 3, . . . . (14.71)

Taking a typical depth-average oceanic value of N ∼ 10−3 s−1 and H ∼ 5 km, the
eigenvalue for the first baroclinic mode is c1 ∼ 2 m/s. The corresponding equivalent
depth is He = c2

1/g ∼ 0.4 m.
An examination of the algebraic steps leading to equation (14.70) shows that

neglecting the right-hand side is equivalent to replacing the upper boundary condi-
tion (14.65′) by w = 0 at z = 0. This is called the rigid lid approximation. The
baroclinic modes are negligibly distorted by the rigid lid approximation. In contrast,
the rigid lid approximation applied to the barotropic mode would yield c0 = ∞, as
equation (14.71) shows for n = 0. Note that the rigid lid approximation does not
imply that the free surface displacement corresponding to the baroclinic modes is
negligible in the ocean. In fact, excluding the wind waves and tides, much of the
free surface displacements in the ocean are due to baroclinic motions. The rigid lid
approximation merely implies that, for baroclinic motions, the vertical displacements
at the surface are much smaller than those within the fluid column. A valid baroclinic
solution can therefore be obtained by setting w = 0 at z = 0. Further, the rigid lid
approximation does not imply that the pressure is constant at the level surface z = 0;
if a rigid lid were actually imposed at z = 0, then the pressure on the lid would vary
due to the baroclinic motions.

The vertical mode shape under the rigid lid approximation is given by the cosine
distribution

ψn = cos
nπz

H
, n = 0, 1, 2, . . . ,

because it satisfies dψn/dz = 0 at z = 0, −H . The nth mode ψn has n zero crossings
within the layer (Figure 14.13).

A decomposition into normal modes is only possible in the absence of
topographic variations and mean currents with shear. It is valid with or without Cori-
olis forces and with or without the β-effect. However, the hydrostatic approximation
here means that the frequencies are much smaller than N . Under this condition the
eigenfunctions are independent of the frequency, as equation (14.56) shows. With-
out the hydrostatic approximation the eigenfunctions ψn become dependent on the
frequency ω. This is discussed, for example, in LeBlond and Mysak (1978).

Summary: Small amplitude motion in a frictionless continuously stratified ocean
can be decomposed in terms of noninteracting vertical normal modes. The vertical
structure of each mode is defined by an eigenfunction ψn(z). If the horizontal scale
of the waves is much larger than the vertical scale, then the equations governing
the horizontal propagation of each mode are identical to those of a shallow homo-
geneous layer, with the layer depth H replaced by an equivalent depth He defined
by c2

n = gHe. For a medium of constant N , the baroclinic (n ! 1) eigenvalues are
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Figure 14.13 Vertical distribution of a few normal modes in a stratified medium of uniform buoyancy
frequency.

given by cn = NH/πn, while the barotropic eigenvalue is c0 = √
gH . The rigid lid

approximation is quite good for the baroclinic modes.

10. High- and Low-Frequency Regimes in
Shallow-Water Equations

We shall now examine what terms are negligible in the shallow-water equations for
the various frequency ranges. Our analysis is valid for a single homogeneous layer
or for a stratified medium. In the latter case H has to be interpreted as the equivalent
depth, and c has to be interpreted as the speed of long nonrotating internal gravity
waves. The β-effect will be considered in this section. As f varies only northward,
horizontal isotropy is lost whenever the β-effect is included, and it becomes necessary
to distinguish between the different horizontal directions. We shall follow the usual
geophysical convention that the x-axis is directed eastward and the y-axis is directed
northward, with u and v the corresponding velocity components.

The simplest way to perform the analysis is to examine the v-equation. A single
equation for v can be derived by first taking the time derivatives of the momentum
equations in (14.45) and using the continuity equation to eliminate ∂η/∂t . This gives

∂2u

∂t2 − f
∂v

∂t
= gH

∂

∂x

(
∂u

∂x
+ ∂v

∂y

)
, (14.72)

∂2v

∂t2 + f
∂u

∂t
= gH

∂

∂y

(
∂u

∂x
+ ∂v

∂y

)
. (14.73)



10. High- and Low-Frequency Regimes in Shallow-Water Equations 635

Now take ∂/∂t of equation (14.73) and use equation (14.72), to obtain

∂3v

∂t3 + f

[
f

∂v

∂t
+ gH

∂

∂x

(
∂u

∂x
+ ∂v

∂y

)]
= gH

∂2

∂y ∂t

(
∂u

∂x
+ ∂v

∂y

)
. (14.74)

To eliminate u, we first obtain a vorticity equation by cross differentiating and sub-
tracting the momentum equations in equation (14.45):

∂

∂t

(
∂u

∂y
− ∂v

∂x

)
− f0

(
∂u

∂x
+ ∂v

∂y

)
− βv = 0.

Here, we have made the customary β-plane approximation, valid if the y-scale is small
enough so that /f/f ≪ 1. Accordingly, we have treated f as constant (and replaced
it by an average value f0) except when df/dy appears; this is why we have written
f0 in the second term of the preceding equation. Taking the x-derivative, multiplying
by gH , and adding to equation (14.74), we finally obtain a vorticity equation in terms
of v only:

∂3v

∂t3 − gH
∂

∂t
∇2

Hv + f 2
0

∂v

∂t
− gHβ

∂v

∂x
= 0,

(14.75)

where ∇2
H = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian operator.

Equation (14.75) is Boussinesq, linear and hydrostatic, but otherwise quite gen-
eral in the sense that it is applicable to both high and low frequencies. Consider wave
solutions of the form

v = v̂ ei(kx+ly−ωt),

where k is the eastward wavenumber and l is the northward wavenumber. Then equa-
tion (14.75) gives

ω3 − c2ωK2 − f 2
0 ω − c2βk = 0, (14.76)

where K2 = k2 + l2 and c = √
gH . It can be shown that all roots of equation (14.76)

are real, two of the roots being superinertial (ω > f ) and the third being subinertial
(ω ≪ f ). Equation (14.76) is the complete dispersion relation for linear shallow-water
equations. In various parametric ranges it takes simpler forms, representing simpler
waves.

First, consider high-frequency waves ω ≫ f . Then the third term of equa-
tion (14.76) is negligible compared to the first term. Moreover, the fourth term is
also negligible in this range. Compare, for example, the fourth and second terms:

c2βk

c2ωK2 ∼ β

ωK
∼ 10−3,
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where we have assumed typical values of β = 2 × 10−11 m−1 s−1, ω = 3f

∼ 3 × 10−4 s−1, and 2π/K ∼ 100 km. For ω ≫ f , therefore, the balance is between
the first and second terms in equation (14.76), and the roots are ω = ±K

√
gH , which

correspond to a propagation speed of ω/K = √
gH . The effects of both f and β are

therefore negligible for high-frequency waves, as is expected as they are too fast to
be affected by the Coriolis effects.

Next consider ω > f , but ω ∼ f . Then the third term in equation (14.76) is not
negligible, but the β-effect is. These are gravity waves influenced by Coriolis forces;
gravity waves are discussed in the next section. However, the time scales are still too
short for the motion to be affected by the β-effect.

Last, consider very slow waves for which ω ≪ f . Then the β-effect becomes
important, and the first term in equation (14.76) becomes negligible. Compare, for
example, the first and the last terms:

ω3

c2βk
≪ 1.

Typical values for the ocean are c ∼ 200 m/s for the barotropic mode, c ∼ 2 m/s for
the baroclinic mode, β = 2 × 10−11 m−1 s−1, 2π/k ∼ 100 km, and ω ∼ 10−5 s−1.
This makes the forementioned ratio about 0.2 × 10−4 for the barotropic mode and
0.2 for the baroclinic mode. The first term in equation (14.76) is therefore negligible
for ω ≪ f .

Equation (14.75) governs the dynamics of a variety of wave motions in the
ocean and the atmosphere, and the discussion in this section shows what terms can
be dropped under various limiting conditions. An understanding of these limiting
conditions will be useful in the following sections.

11. Gravity Waves with Rotation
In this chapter we shall examine several free-wave solutions of the shallow-water
equations. In this section we shall study gravity waves with frequencies in the
range ω > f , for which the β-effect is negligible, as demonstrated in the preced-
ing section. Consequently, the Coriolis frequency f is regarded as constant here.
Consider progressive waves of the form

(u, v, η) = (û, v̂, η̂)ei(kx+ly−ωt),

where û, v̂, and η̂ are the complex amplitudes, and the real part of the right-hand side
is meant. Then equation (14.45) gives

−iωû − f v̂ = −ikgη̂, (14.77)

−iωv̂ + f û = −ilgη̂, (14.78)

−iωη̂ + iH(kû + lv̂) = 0. (14.79)
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Solving for û and v̂ between equations (14.77) and (14.78), we obtain

û = gη̂

ω2 − f 2 (ωk + if l),

v̂ = gη̂

ω2 − f 2 (−if k + ωl).

(14.80)

Substituting these in equation (14.79), we obtain

ω2 − f 2 = gH(k2 + l2). (14.81)

This is the dispersion relation of gravity waves in the presence of Coriolis forces.
(The relation can be most simply derived by setting the determinant of the set of linear
homogeneous equations (14.77)–(14.79) to zero.) It can be written as

ω2 = f 2 + gHK2, (14.82)

where K =
√

k2 + l2 is the magnitude of the horizontal wavenumber. The disper-
sion relation shows that the waves can propagate in any horizontal direction and have
ω > f . Gravity waves affected by Coriolis forces are called Poincaré waves, Sverdrup
waves, or simply rotational gravity waves. (Sometimes the name “Poincaré wave” is
used to describe those rotational gravity waves that satisfy the boundary conditions
in a channel.) In spite of their name, the solution was first worked out by Kelvin (Gill,
1982, p. 197). A plot of equation (14.82) is shown in Figure 14.14. It is seen that the
waves are dispersive except for ω ≫ f when equation (14.82) gives ω2 ≃ gHK2,
so that the propagation speed is ω/K = √

gH . The high-frequency limit agrees
with our previous discussion of surface gravity waves unaffected by Coriolis
forces.

Figure 14.14 Dispersion relations for Poincaré and Kelvin waves.
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Particle Orbit

The symmetry of the dispersion relation (14.81) with respect to k and l means that the
x- and y-directions are not felt differently by the wavefield. The horizontal isotropy
is a result of treating f as constant. (We shall see later that Rossby waves, which
depend on the β-effect, are not horizontally isotropic.) We can therefore orient the
x-axis along the wavenumber vector and set l = 0, so that the wavefield is invariant
along the y-axis. To find the particle orbits, it is convenient to work with real quantities.
Let the displacement be

η = η̂ cos(kx − ωt),

where η̂ is real. The corresponding velocity components can be found by multiplying
equation (14.80) by exp(ikx − iωt) and taking the real part of both sides. This gives

u = ωη̂

kH
cos(kx − ωt),

v = f η̂

kH
sin(kx − ωt).

(14.83)

To find the particle paths, take x = 0 and consider three values of time corresponding
to ωt = 0, π/2, and π . The corresponding values of u and v from equation (14.83)
show that the velocity vector rotates clockwise (in the northern hemisphere) in elliptic
paths (Figure 14.15). The ellipticity is expected, since the presence of Coriolis forces
means that f u must generate ∂v/∂t according to the equation of motion (14.45).
(In equation (14.45), ∂η/∂y = 0 due to our orienting the x-axis along the direction
of propagation of the wave.) Particles are therefore constantly deflected to the right
by the Coriolis force, resulting in elliptic orbits. The ellipses have an axis ratio of
ω/f, and the major axis is oriented in the direction of wave propagation. The ellipses
become narrower as ω/f increases, approaching the rectilinear orbit of gravity waves

Figure 14.15 Particle orbit in a rotational gravity wave. Velocity components corresponding to ωt = 0,
π/2, and π are indicated.
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unaffected by planetary rotation. However, the sea surface in a rotational gravity wave
is no different than that for ordinary gravity waves, namely oscillatory in the direction
of propagation and invariant in the perpendicular direction.

Inertial Motion

Consider the limit ω → f , that is when the particle paths are circular. The dispersion
relation (14.82) then shows that K → 0, implying a horizontal uniformity of the flow
field. Equation (14.79) shows that η̂ must tend to zero in this limit, so that there
are no horizontal pressure gradients in this limit. Because ∂u/∂x = ∂v/∂y = 0, the
continuity equation shows that w = 0. The particles therefore move on horizontal
sheets, each layer decoupled from the one above and below it. The balance of forces is

∂u

∂t
− f v = 0,

∂v

∂t
+ f u = 0.

The solution of this set is of the form

u = q cos f t,

v = −q sin f t,

where the speed q =
√

u2 + v2 is constant along the path. The radius r of the orbit
can be found by adopting a Lagrangian point of view, and noting that the equilibrium
of forces is between the Coriolis force f q and the centrifugal force rω2 = rf 2,
giving r = q/f . The limiting case of motion in circular orbits at a frequency f is
called inertial motion, because in the absence of pressure gradients a particle moves
by virtue of its inertia alone. The corresponding period 2π/f is called the inertial
period. In the absence of planetary rotation such motion would be along straight
lines; in the presence of Coriolis forces the motion is along circular paths, called
inertial circles. Near-inertial motion is frequently generated in the surface layer of
the ocean by sudden changes of the wind field, essentially because the equations of
motion (14.45) have a natural frequency f . Taking a typical current magnitude of
q ∼ 0.1 m/s, the radius of the orbit is r ∼ 1 km.

12. Kelvin Wave
In the preceding section we considered a shallow-water gravity wave propagating in
a horizontally unbounded ocean. We saw that the crests are horizontal and oriented in
a direction perpendicular to the direction of propagation. The absence of a transverse
pressure gradient ∂η/∂y resulted in a transverse flow and elliptic orbits. This is clear
from the third equation in (14.45), which shows that the presence of f u must result in
∂v/∂t if ∂η/∂y = 0. In this section we consider a gravity wave propagating parallel
to a wall, whose presence allows a pressure gradient ∂η/∂y that can decay away from
the wall. We shall see that this allows a gravity wave in which f u is geostrophically
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balanced by −g(∂η/∂y), and v = 0. Consequently the particle orbits are not elliptic
but rectilinear.

Consider first a gravity wave propagating in a channel. From Figure 7.7 we know
that the fluid velocity under a crest is “forward” (i.e., in the direction of propagation),
and that under a trough it is backward. Figure 14.16 shows two transverse sections of
the wave, one through a crest (left panel) and the other through a trough (right panel).
The wave is propagating into the plane of the paper, along the x-direction. Then the
fluid velocity under the crest is into the plane of the paper and that under the trough is
out of the plane of the paper. The constraints of the side walls require that v = 0 at the
walls, and we are exploring the possibility of a wave motion in which v is zero every-
where. Then the equation of motion along the y-direction requires that f u can only be
geostrophically balanced by a transverse slope of the sea surface across the channel:

f u = −g
∂η

∂y
.

In the northern hemisphere, the surface must slope as indicated in the figure, that is
downward to the left under the crest and upward to the left under the trough, so that
the pressure force has the current directed to its right. The result is that the amplitude
of the wave is larger on the right-hand side of the channel, looking into the direction
of propagation, as indicated in Figure 14.16. The current amplitude, like the surface
displacement, also decays to the left.

If the left wall in Figure 14.16 is moved away to infinity, we get a gravity wave
trapped to the coast (Figure 14.17). A coastally trapped long gravity wave, in which
the transverse velocity v = 0 everywhere, is called a Kelvin wave. It is clear that it can
propagate only in a direction such that the coast is to the right (looking in the direction
of propagation) in the northern hemisphere and to the left in the southern hemisphere.
The opposite direction of propagation would result in a sea surface displacement
increasing exponentially away from the coast, which is not possible.

An examination of the transverse momentum equation

∂v

∂t
+ f u = −g

∂η

∂y
,

Figure 14.16 Free surface distribution in a gravity wave propagating through a channel into the plane of
the paper.
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Figure 14.17 Coastal Kelvin wave propagating along the x-axis. Sea surface across a section through a
crest is indicated by the continuous line, and that along a trough is indicated by the dashed line.

reveals fundamental differences between Poincaré waves and Kelvin waves. For a
Poincaré wave the crests are horizontal, and the absence of a transverse pressure
gradient requires a ∂v/∂t to balance the Coriolis force, resulting in elliptic orbits. In a
Kelvin wave a transverse velocity is prevented by a geostrophic balance of f u and
−g(∂η/∂y).

From the shallow-water set (14.45), the equations of motion for a Kelvin wave
propagating along a coast aligned with the x-axis (Figure 14.17) are

∂η

∂t
+ H

∂u

∂x
= 0,

∂u

∂t
= −g

∂η

∂x
, (14.84)

f u = −g
∂η

∂y
.

Assume a solution of the form

[u, η] = [û(y), η̂(y)]ei(kx−ωt).

Then equation (14.84) gives

−iωη̂ + iHkû = 0,

−iωû = −igkη̂, (14.85)

f û = −g
dη̂

dy
.
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The dispersion relation can be found solely from the first two of these equations; the
third equation then determines the transverse structure. Eliminating û between the
first two, we obtain

η̂[ω2 − gHk2] = 0.

A nontrivial solution is therefore possible only if ω = ±k
√

gH , so that the wave
propagates with a nondispersive speed

c = √
gH . (14.86)

The propagation speed of a Kelvin wave is therefore identical to that of nonrotating
gravity waves. Its dispersion equation is a straight line and is shown in Figure 14.14.
All frequencies are possible.

To determine the transverse structure, eliminate û between the first and third of
equation (14.85), giving

dη̂

dy
± f

c
η̂ = 0.

The solution that decays away from the coast is

η̂ = η0 e−fy/c,

where η0 is the amplitude at the coast. Therefore, the sea surface slope and the velocity
field for a Kelvin wave have the form

η = η0 e−fy/c cos k(x − ct),

u = η0

√
g

H
e−fy/c cos k(x − ct),

(14.87)

where we have taken the real parts, and have used equation (14.85) in obtaining the
u field.

Equations (14.87) show that the transverse decay scale of the Kelvin wave is

0 ≡ c

f
,

which is called the Rossby radius of deformation. For a deep sea of depth H = 5 km,
and a midlatitude value of f = 10−4 s−1, we obtain c = √

gH = 220 m/s and
0 = c/f = 2200 km. Tides are frequently in the form of coastal Kelvin waves of
semidiurnal frequency. The tides are forced by the periodic changes in the gravitational
attraction of the moon and the sun. These waves propagate along the boundaries of
an ocean basin and cause sea level fluctuations at coastal stations.
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Analogous to the surface or “external” Kelvin waves discussed in the preceding,
we can have internal Kelvin waves at the interface between two fluids of different
densities (Figure 14.18). If the lower layer is very deep, then the speed of propagation
is given by (see equation (7.126))

c =
√

g′H,

where H is the thickness of the upper layer and g′ = g(ρ2 − ρ1)/ρ2 is the reduced
gravity. For a continuously stratified medium of depth H and buoyancy frequency N,

internal Kelvin waves can propagate at any of the normal mode speeds

c = NH/nπ, n = 1, 2, . . . .

The decay scale for internal Kelvin waves, 0 = c/f, is called the internal Rossby
radius of deformation, whose value is much smaller than that for the external Rossby
radius of deformation. For n = 1, a typical value in the ocean is 0 = NH/πf

∼ 50 km; a typical atmospheric value is much larger, being of order 0 ∼ 1000 km.
Internal Kelvin waves in the ocean are frequently forced by wind changes near

coastal areas. For example, a southward wind along the west coast of a continent
in the northern hemisphere (say, California) generates an Ekman layer at the ocean
surface, in which the mass flow is away from the coast (to the right of the applied wind
stress). The mass flux in the near-surface layer is compensated by the movement of
deeper water toward the coast, which raises the thermocline. An upward movement of
the thermocline, as indicated by the dashed line in Figure 14.18, is called upwelling.
The vertical movement of the thermocline in the wind-forced region then propagates
poleward along the coast as an internal Kelvin wave.

Figure 14.18 Internal Kelvin wave at an interface. Dashed line indicates position of the interface when
it is at its maximum height. Displacement of the free surface is much smaller than that of the interface and
is oppositely directed.
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13. Potential Vorticity Conservation in
Shallow-Water Theory

In this section we shall derive a useful conservation law for the vorticity of a shal-
low layer of fluid. From Section 8, the equations of motion for a shallow layer of
homogeneous fluid are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −g

∂η

∂x
, (14.88)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −g

∂η

∂y
, (14.89)

∂h

∂t
+ ∂

∂x
(uh) + ∂

∂y
(vh) = 0, (14.90)

where h(x, y, t) is the depth of flow and η is the height of the sea surface measured
from an arbitrary horizontal plane (Figure 14.19). The x-axis is taken eastward and the
y-axis is taken northward, with u and v the corresponding velocity components. The
Coriolis frequency f = f0 + βy is regarded as dependent on latitude. The nonlinear
terms have been retained, including those in the continuity equation, which has been
written in the form (14.44); note that h = H + η. We saw in Section 8 that the constant
density of the layer and the hydrostatic pressure distribution make the horizontal
pressure gradient depth-independent, so that only a depth-independent current can be
generated. The vertical velocity is linear in z.

A vorticity equation can be derived by differentiating equation (14.88) with
respect to y, equation (14.89) with respect to x, and subtracting. The pressure is
eliminated, and we obtain

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ ∂

∂x

[
u

∂v

∂x
+ v

∂v

∂y

]
− ∂

∂y

[
u

∂u

∂x
+ v

∂u

∂y

]

+ f0

(
∂u

∂x
+ ∂v

∂y

)
+ βv = 0. (14.91)

Figure 14.19 Shallow layer of instantaneous depth h(x, y, t).
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Following the customary β-plane approximation, we have treated f as constant
(and replaced it by an average valuef0) except whendf/dy appears. We now introduce

ζ ≡ ∂v

∂x
− ∂u

∂y
,

as the vertical component of relative vorticity, that is, the vorticity measured relative
to the rotating earth. Then the nonlinear terms in equation (14.91) can easily be
rearranged in the form

u
∂ζ

∂x
+ v

∂ζ

∂y
+

(
∂u

∂x
+ ∂v

∂y

)
ζ.

Equation (14.91) then becomes

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+

(
∂u

∂x
+ ∂v

∂y

)
(ζ + f0) + βv = 0,

which can be written as

Dζ

Dt
+ (ζ + f0)

(
∂u

∂x
+ ∂v

∂y

)
+ βv = 0, (14.92)

where D/Dt is the derivative following the horizontal motion of the layer:

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

The horizontal divergence (∂u/∂x+∂v/∂y) in equation (14.92) can be eliminated
by using the continuity equation (14.90), which can be written as

Dh

Dt
+ h

(
∂u

∂x
+ ∂v

∂y

)
= 0.

Equation (14.92) then becomes

Dζ

Dt
= ζ + f0

h

Dh

Dt
− βv.

This can be written as

D(ζ + f )

Dt
= ζ + f0

h

Dh

Dt
, (14.93)

where we have used

Df

Dt
= ∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= vβ.
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Because of the absence of vertical shear, the vorticity in a shallow-water model
is purely vertical and independent of depth. The relative vorticity measured with
respect to the rotating earth is ζ , while f is the planetary vorticity, so that the absolute
vorticity is (ζ +f ). Equation (14.93) shows that the rate of change of absolute vorticity
is proportional to the absolute vorticity times the vertical stretching Dh/Dt of the
water column. It is apparent that Dζ/Dt can be nonzero even if ζ = 0 initially. This is
different from a nonrotating flow in which stretching a fluid line changes its vorticity
only if the line has an initial vorticity. (This is why the process was called the vortex
stretching; see Chapter 5, Section 7.) The difference arises because vertical lines in a
rotating earth contain the planetary vorticity even when ζ = 0. Note that the vortex
tilting term, discussed in Chapter 5, Section 7, is absent in the shallow-water theory
because the water moves in the form of vertical columns without ever tilting.

Equation (14.93) can be written in the compact form

D

Dt

(
ζ + f

h

)
= 0, (14.94)

where f = f0 +βy, and we have assumed βy ≪ f0. The ratio (ζ +f )/h is called the
potential vorticity in shallow-water theory. Equation (14.94) shows that the potential
vorticity is conserved along the motion, an important principle in geophysical fluid
dynamics. In the ocean, outside regions of strong current vorticity such as coastal
boundaries, the magnitude of ζ is much smaller than that of f . In such a case (ζ +f )
has the sign of f . The principle of conservation of potential vorticity means that an
increase in h must make (ζ + f ) more positive in the northern hemisphere and more
negative in the southern hemisphere.

As an example of application of the potential vorticity equation, consider an
eastward flow over a step (at x = 0) running north–south, across which the layer
thickness changes discontinuously from h0 to h1 (Figure 14.20). The flow upstream
of the step has a uniform speed U , so that the oncoming stream has no relative vorticity.
To conserve the ratio (ζ + f )/h, the flow must suddenly acquire negative (clockwise)
relative vorticity due to the sudden decrease in layer thickness. The relative vorticity
of a fluid element just after passing the step can be found from

f

h0
= ζ + f

h1
,

giving ζ = f (h1 − h0)/h0 < 0, where f is evaluated at the upstream latitude of the
streamline. Because of the clockwise vorticity, the fluid starts to move south at x = 0.
The southward movement decreases f , so that ζ must correspondingly increase so
as to keep (f + ζ ) constant. This means that the clockwise curvature of the stream
reduces, and eventually becomes a counterclockwise curvature. In this manner an
eastward flow over a step generates stationary undulatory flow on the downstream
side. In Section 15 we shall see that the stationary oscillation is due to a Rossby wave
generated at the step whose westward phase velocity is canceled by the eastward
current. We shall see that the wavelength is 2π

√
U/β.
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Figure 14.20 Eastward flow over a step, resulting in stationary oscillations of wavelength 2π
√

U/β.

Suppose we try the same argument for a westward flow over a step. Then a
particle should suddenly acquire clockwise vorticity as the depth of flow decreases
at x = 0, which would require the particle to move north. It would then come into a
region of larger f , which would require ζ to decrease further. Clearly, an exponential
behavior is predicted, suggesting that the argument is not correct. Unlike an eastward
flow, a westward current feels the upstream influence of the step so that it acquires a
counterclockwise curvature before it encounters the step (Figure 14.21). The positive
vorticity is balanced by a reduction in f , which is consistent with conservation of
potential vorticity. At the location of the step the vorticity decreases suddenly. Finally,
far downstream of the step a fluid particle is again moving westward at its original
latitude. The westward flow over a topography is not oscillatory.

14. Internal Waves
In Chapter 7, Section 19 we studied internal gravity waves unaffected by Cori-
olis forces. We saw that they are not isotropic; in fact the direction of propa-
gation with respect to the vertical determines their frequency. We also saw that
their frequency satisfies the inequality ω " N , where N is the buoyancy frequency.
Their phase-velocity vector c and the group-velocity vector cg are perpendicular and
have oppositely directed vertical components (Figure 7.32 and Figure 7.34). That is,
phases propagate upward if the groups propagate downward, and vice versa. In this
section we shall study the effect of Coriolis forces on internal waves, assuming that
f is independent of latitude.

Internal waves are ubiquitous in the atmosphere and the ocean. In the lower atmo-
sphere turbulent motions dominate, so that internal wave activity represents a minor
component of the motion. In contrast, the stratosphere contains very little convective
motion because of its stable density distribution, and consequently a great deal of
internal wave activity. They generally propagate upward from the lower atmosphere,
where they are generated. In the ocean they may be as common as the waves on
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Figure 14.21 Westward flow over a step. Unlike the eastward flow, the westward flow is not oscillatory
and feels the upstream influence of the step.

the surface, and measurements show that they can cause the isotherms to go up and
down by as much as 50–100 m. Sometimes the internal waves break and generate
small-scale turbulence, similar to the “foam” generated by breaking waves.

We shall now examine the nature of the fluid motion in internal waves. The
equations of motion are

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂u

∂t
− f v = − 1

ρ0

∂p

∂x
,

∂v

∂t
+ f u = − 1

ρ0

∂p

∂y
, (14.95)

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρg

ρ0
,

∂ρ

∂t
− ρ0N

2

g
w = 0.

We have not made the hydrostatic assumption because we are not assuming that the
horizontal wavelength is long compared to the vertical wavelength. The advective
term in the density equation is written in a linearized form w(dρ̄/dz) = −ρ0N

2w/g.
Thus the rate of change of density at a point is assumed to be due only to the ver-
tical advection of the background density distribution ρ̄(z). Because internal wave
activity is more intense in the thermocline where N varies appreciably (Figure 14.2),
we shall be somewhat more general than in Chapter 7 and not assume that N is
depth-independent.

An equation for w can be formed from the set (14.95) by eliminating all other
variables. The algebraic steps of such a procedure are shown in Chapter 7, Section 18
without the Coriolis forces. This gives
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∂2

∂t2 ∇2w + N2∇2
Hw + f 2 ∂2w

∂z2 = 0, (14.96)

where

∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

and

∇2
H ≡ ∂2

∂x2 + ∂2

∂y2 .

Because the coefficients of equation (14.96) are independent of the horizontal direc-
tions, equation (14.96) can have solutions that are trigonometric in x and y. We
therefore assume a solution of the form

[u, v, w] = [û(z), v̂(z), ŵ(z)] ei(kx+ly−ωt). (14.97)

Substitution into equation (14.96) gives

(−iω)2
[
(ik)2 + (il)2 + d2

dz2

]
ŵ + N2[(ik)2 + (il)2]ŵ + f 2 d2ŵ

dz2 = 0,

from which we obtain

d2ŵ

dz2 + (N2 − ω2)(k2 + l2)

ω2 − f 2 ŵ = 0. (14.98)

Defining

m2(z) ≡ (k2 + l2)[N2(z) − ω2]
ω2 − f 2 , (14.99)

Equation (14.98) becomes

d2ŵ

dz2 + m2ŵ = 0. (14.100)

For m2 < 0, the solutions of equation (14.100) are exponential in z signifying that
the resulting motion is surface-trapped. It represents a surface wave propagating hor-
izontally. For a positive m2, on the other hand, solutions are trigonometric in z, giving
internal waves propagating vertically as well as horizontally. From equation (14.99),
therefore, internal waves are possible only in the frequency range:

f < ω < N ,

where we have assumed N > f , as is true for much of the atmosphere and the ocean.
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WKB Solution

To proceed further, we assume that N(z) is a slowly varying function in that its
fractional change over a vertical wavelength is much less than unity. We are therefore
considering only those internal waves whose vertical wavelength is short compared
to the scale of variation of N . If H is a characteristic vertical distance over which N

varies appreciably, then we are assuming that

Hm ≫ 1.

For such slowly varying N(z), we expect that m(z) given by equation (14.99) is also
a slowly varying function, that is, m(z) changes by a small fraction in a distance 1/m.
Under this assumption the waves locally behave like plane waves, as if m is constant.
This is the so-called WKB approximation (after Wentzel–Kramers–Brillouin), which
applies when the properties of the medium (in this case N ) are slowly varying.

To derive the approximate WKB solution of equation (14.100), we look for a
solution in the form

ŵ = A(z)eiφ(z),

where the phase φ and the (slowly varying) amplitude A are real. (No generality is
lost by assuming A to be real. Suppose it is complex and of the form A = Ā exp(iα),
where Ā and α are real. Then ŵ = Ā exp [i(φ + α)], a form in which (φ + α) is the
phase.) Substitution into equation (14.100) gives

d2A

dz2 + A

[
m2 −

(
dφ

dz

)2]
+ i2

dA

dz

dφ

dz
+ iA

d2φ

dz2 = 0.

Equating the real and imaginary parts, we obtain

d2A

dz2 + A

[
m2 −

(
dφ

dz

)2]
= 0, (14.101)

2
dA

dz

dφ

dz
+ A

d2φ

dz2 = 0. (14.102)

In equation (14.101) the term d2A/dz2 is negligible because its ratio with the second
term is

d2A/dz2

Am2 ∼ 1
H 2m2 ≪ 1.

Equation (14.101) then becomes approximately

dφ

dz
= ±m, (14.103)
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whose solution is

φ = ±
∫ z

m dz,

the lower limit of the integral being arbitrary.
The amplitude is determined by writing equation (14.102) in the form

dA

A
= − (d2φ/dz2) dz

2(dφ/dz)
= − (dm/dz) dz

2m
= −1

2
dm

m
,

where equation (14.103) has been used. Integrating, we obtain ln A = − 1
2 ln m +

const., that is,

A = A0√
m

,

where A0 is a constant. The WKB solution of equation (14.100) is therefore

ŵ = A0√
m

e±i
∫ z

m dz. (14.104)

Because of neglect of the β-effect, the waves must behave similarly in x and y,
as indicated by the symmetry of the dispersion relation (14.99) in k and l. Therefore,
we lose no generality by orienting the x-axis in the direction of propagation, and
taking

k > 0 l = 0 ω > 0.

To find u and v in terms of w, use the continuity equation ∂u/∂x + ∂w/∂z = 0,
noting that the y-derivatives are zero because of our setting l = 0. Substituting the
wave solution (14.97) into the continuity equation gives

ikû + dŵ

dz
= 0. (14.105)

The z-derivative of ŵ in equation (14.104) can be obtained by treating the denominator√
m as approximately constant because the variation of ŵ is dominated by the wiggly

behavior of the local plane wave solution. This gives

dŵ

dz
= A0√

m
(±im)e±i

∫ z
m dz = ±iA0

√
me±i

∫ z
m dz,

so that equation (14.105) becomes

û = ∓A0
√

m

k
e±i

∫ z
m dz. (14.106)
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An expression for v̂ can now be obtained from the horizontal equations of motion
in equation (14.95). Cross differentiating, we obtain the vorticity equation

∂

∂t

(
∂u

∂y
− ∂v

∂x

)
= f

(
∂u

∂x
+ ∂v

∂y

)
.

Using the wave solution equation (14.97), this gives

û

v̂
= iω

f
.

Equation (14.106) then gives

v̂ = ± if

ω

A0
√

m

k
e±i

∫ z
m dz. (14.107)

Taking real parts of equations (14.104), (14.106), and (14.107), we obtain the velocity
field

u = ∓A0
√

m

k
cos

(
kx ±

∫ z

m dz − ωt

)
,

v = ∓A0f
√

m

ωk
sin

(
kx ±

∫ z

m dz − ωt

)
,

w = A0√
m

cos
(

kx ±
∫ z

m dz − ωt

)
,

(14.108)

where the dispersion relation is

m2 = k2(N2 − ω2)

ω2 − f 2 . (14.109)

The meaning of m(z) is clear from equation (14.108). If we call the argument of the
trigonometric terms the “phase,” then it is apparent that ∂(phase)/∂z = m(z), so that
m(z) is the local vertical wavenumber. Because we are treating k, m, ω > 0, it is also
apparent that the upper signs represent waves with upward phase propagation, and
the lower signs represent downward phase propagation.

Particle Orbit

To find the shape of the hodograph in the horizontal plane, consider the point
x = z = 0. Then equation (14.108) gives

u = ∓ cos ωt,

v = ±f

ω
sin ωt,

(14.110)
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Figure 14.22 Particle orbit in an internal wave. The upper panel (a) shows projection on a horizontal plane;
points corresponding to ωt = 0, π/2, and π are indicated. The lower panel (b) shows a three-dimensional
view. Sense of rotation shown is valid for the northern hemisphere.

where the amplitude of u has been arbitrarily set to one. Taking the upper signs in
equation (14.110), the values of u and v are indicated in Figure 14.22a for three values
of time corresponding to ωt = 0, π/2, and π . It is clear that the horizontal hodographs
are clockwise ellipses, with the major axis in the direction of propagation x, and the
axis ratio is f/ω. The same conclusion applies for the lower signs in equation (14.110).
The particle orbits in the horizontal plane are therefore identical to those of Poincaré
waves (Figure 14.15).

However, the plane of the motion is no longer horizontal. From the velocity
components equation (14.108), we note that

u

w
= ∓m

k
= ∓ tan θ, (14.111)

where θ = tan−1(m/k) is the angle made by the wavenumber vector K with the
horizontal (Figure 14.23). For upward phase propagation, equation (14.111) gives
u/w = − tan θ , so that w is negative if u is positive, as indicated in Figure 14.23.
A three-dimensional sketch of the particle orbit is shown in Figure 14.22b. It is easy
to show (Exercise 6) that the phase velocity vector c is in the direction of K, that c
and cg are perpendicular, and that the fluid motion u is parallel to cg; these facts are
demonstrated in Chapter 7 for internal waves unaffected by Coriolis forces.
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Figure 14.23 Vertical section of an internal wave. The three parallel lines are constant phase lines, with
the arrows indicating fluid motion along the lines.

The velocity vector at any location rotates clockwise with time. Because of the
vertical propagation of phase, the tips of the instantaneous vectors also turn with depth.
Consider the turning of the velocity vectors with depth when the phase velocity is
upward, so that the deeper currents have a phase lead over the shallower currents
(Figure 14.24). Because the currents at all depths rotate clockwise in time (whether
the vertical component of c is upward or downward), it follows that the tips of the
instantaneous velocity vectors should fall on a helical spiral that turns clockwise with
depth. Only such a turning in depth, coupled with a clockwise rotation of the velocity
vectors with time, can result in a phase lead of the deeper currents. In the opposite case
of a downward phase propagation, the helix turns counterclockwise with depth. The
direction of turning of the velocity vectors can also be found from equation (14.108),
by considering x = t = 0 and finding u and v at various values of z.

Discussion of the Dispersion Relation

The dispersion relation (14.109) can be written as

ω2 − f 2 = k2

m2 (N2 − ω2). (14.112)

Introducing tan θ = m/k, equation (14.112) becomes

ω2 = f 2 sin2θ + N2 cos2θ,

which shows that ω is a function of the angle made by the wavenumber with the
horizontal and is not a function of the magnitude of K. For f = 0 the forementioned
expression reduces to ω = N cos θ , derived in Chapter 7, Section 19 without Coriolis
forces.
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Figure 14.24 Helical spiral traced out by the tips of instantaneous velocity vectors in an internal wave
with upward phase speed. Heavy arrows show the velocity vectors at two depths, and light arrows indicate
that they are rotating clockwise with time. Note that the instantaneous vectors turn clockwise with depth.

Figure 14.25 Dispersion relation for internal waves. The different regimes are indicated on the left-hand
side of the figure.

A plot of the dispersion relation (14.112) is presented in Figure 14.25, showing
ω as a function of k for various values of m. All curves pass through the point ω = f ,
which represents inertial oscillations. Typically, N ≫ f in most of the atmosphere
and the ocean. Because of the wide separation of the upper and lower limits of the
internal wave range f " ω " N, various limiting cases are possible, as indicated in
Figure 14.25. They are

(1) High-frequency regime (ω ∼ N, but ω " N ): In this range f 2 is negligible
in comparison with ω2 in the denominator of the dispersion relation (14.109),
which reduces to
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m2 ≃ k2(N2 − ω2)

ω2 , that is, ω2 ≃ N2k2

m2 + k2 .

Using tan θ = m/k, this gives ω = N cos θ . Thus, the high-frequency inter-
nal waves are the same as the nonrotating internal waves discussed in
Chapter 7.

(2) Low-frequency regime (ω ∼ f, but ω ! f ): In this range ω2 can be neglected
in comparison to N2 in the dispersion relation (14.109), which becomes

m2 ≃ k2N2

ω2 − f 2 , that is, ω2 ≃ f 2 + k2N2

m2 .

The low-frequency limit is obtained by making the hydrostatic assumption,
that is, neglecting ∂w/∂t in the vertical equation of motion.

(3) Midfrequency regime (f ≪ ω ≪ N ): In this range the dispersion relation
(14.109) simplifies to

m2 ≃ k2N2

ω2 ,

so that both the hydrostatic and the nonrotating assumptions are applicable.

Lee Wave

Internal waves are frequently found in the “lee” (that is, the downstream side) of
mountains. In stably stratified conditions, the flow of air over a mountain causes
a vertical displacement of fluid particles, which sets up internal waves as it moves
downstream of the mountain. If the amplitude is large and the air is moist, the upward
motion causes condensation and cloud formation.

Due to the effect of a mean flow, the lee waves are stationary with respect to the
ground. This is shown in Figure 14.26, where the westward phase speed is canceled
by the eastward mean flow. We shall determine what wave parameters make this
cancellation possible. The frequency of lee waves is much larger than f , so that
rotational effects are negligible. The dispersion relation is therefore

ω2 = N2k2

m2 + k2 . (14.113)

However, we now have to introduce the effects of the mean flow. The dispersion
relation (14.113) is still valid if ω is interpreted as the intrinsic frequency, that is, the
frequency measured in a frame of reference moving with the mean flow. In a medium
moving with a velocity U, the observed frequency of waves at a fixed point is Doppler
shifted to

ω0 = ω + K • U,
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Figure 14.26 Streamlines in a lee wave. The thin line drawn through crests shows that the phase propa-
gates downward and westward.

where ω is the intrinsic frequency; this is discussed further in Chapter 7, Section 3.
For a stationary wave ω0 = 0, which requires that the intrinsic frequency is
ω = −K • U = kU . (Here −K • U is positive because K is westward and U is
eastward.) The dispersion relation (14.113) then gives

U = N√
k2 + m2

.

If the flow speed U is given, and the mountain introduces a typical horizontal
wavenumber k, then the preceding equation determines the vertical wavenumber
m that generates stationary waves. Waves that do not satisfy this condition would
radiate away.

The energy source of lee waves is at the surface. The energy therefore must prop-
agate upward, and consequently the phases propagate downward. The intrinsic phase
speed is therefore westward and downward in Figure 14.26. With this information,
we can determine which way the constant phase lines should tilt in a stationary lee
wave. Note that the wave pattern in Figure 14.26 would propagate to the left in the
absence of a mean velocity, and only with the constant phase lines tilting backwards
with height would the flow at larger height lead the flow at a lower height.

Further discussion of internal waves can be found in Phillips (1977) and Munk
(1981); lee waves are discussed in Holton (1979).

15. Rossby Wave
To this point we have discussed wave motions that are possible with a constant Coriolis
frequency f and found that these waves have frequencies larger than f . We shall now
consider wave motions that owe their existence to the variation of f with latitude.
With such a variable f , the equations of motion allow a very important type of wave
motion called the Rossby wave. Their spatial scales are so large in the atmosphere that
they usually have only a few wavelengths around the entire globe (Figure 14.27). This
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Figure 14.27 Observed height (in decameters) of the 50 kPa pressure surface in the northern hemi-
sphere. The center of the picture represents the north pole. The undulations are due to Rossby waves
(dm = km/100). J. T. Houghton, The Physics of the Atmosphere, 1986 and reprinted with the permission
of Cambridge University Press.

is why Rossby waves are also called planetary waves. In the ocean, however, their
wavelengths are only about 100 km. Rossby-wave frequencies obey the inequality
ω ≪ f . Because of this slowness the time derivative terms are an order of magnitude
smaller than the Coriolis forces and the pressure gradients in the horizontal equations
of motion. Such nearly geostrophic flows are called quasi-geostrophic motions.

Quasi-Geostrophic Vorticity Equation

We shall first derive the governing equation for quasi-geostrophic motions. For sim-
plicity, we shall make the customary β-plane approximation valid for βy ≪ f0, keep-
ing in mind that the approximation is not a good one for atmospheric Rossby waves,
which have planetary scales. Although Rossby waves are frequently superposed on
a mean flow, we shall derive the equations without a mean flow, and superpose a
uniform mean flow at the end, assuming that the perturbations are small and that a
linear superposition is valid. The first step is to simplify the vorticity equation for
quasi-geostrophic motions, assuming that the velocity is geostrophic to the lowest
order. The small departures from geostrophy, however, are important because they
determine the evolution of the flow with time.
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We start with the shallow-water potential vorticity equation

D

Dt

(
ζ + f

h

)
= 0,

which can be written as

h
D

Dt
(ζ + f ) − (ζ + f )

Dh

Dt
= 0.

We now expand the material derivative and substitute h = H + η, where H is the
uniform undisturbed depth of the layer, and η is the surface displacement. This gives

(H + η)

(
∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ βv

)
− (ζ + f0)

(
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

)
= 0.

(14.114)

Here, we have used Df/Dt = v(df/dy) = βv. We have also replaced f by f0
in the second term because the β-plane approximation neglects the variation of f

except when it involves df/dy. For small perturbations we can neglect the quadratic
nonlinear terms in equation (14.114), obtaining

H
∂ζ

∂t
+ Hβv − f0

∂η

∂t
= 0. (14.115)

This is the linearized form of the potential vorticity equation. Its quasi-geostrophic ver-
sion is obtained if we substitute the approximate geostrophic expressions for velocity:

u ≃ − g

f0

∂η

∂y
,

v ≃ g

f0

∂η

∂x
.

(14.116)

From this the vorticity is found as

ζ = g

f0

(
∂2η

∂x2 + ∂2η

∂y2

)
,

so that the vorticity equation (14.115) becomes

gH

f0

∂

∂t

(
∂2η

∂x2 + ∂2η

∂y2

)
+ gHβ

f0

∂η

∂x
− f0

∂η

∂t
= 0.

Denoting c = √
gH , this becomes

∂

∂t

(
∂2η

∂x2 + ∂2η

∂y2 − f 2
0

c2 η

)

+ β
∂η

∂x
= 0. (14.117)
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This is the quasi-geostrophic form of the linearized vorticity equation, which governs
the flow of large-scale motions. The ratio c/f0 is recognized as the Rossby radius.
Note that we have not set ∂η/∂t = 0, in equation (14.115) during the derivation
of equation (14.117), although a strict validity of the geostrophic relations (14.116)
would require that the horizontal divergence, and hence ∂η/∂t , be zero. This is because
the departure from strict geostrophy determines the evolution of the flow described
by equation (14.117). We can therefore use the geostrophic relations for velocity
everywhere except in the horizontal divergence term in the vorticity equation.

Dispersion Relation

Assume solutions of the form

η = η̂ ei(kx+ly−ωt).

We shall regard ω as positive; the signs of k and l then determine the direction of
phase propagation. A substitution into the vorticity equation (14.117) gives

ω = − βk

k2 + l2 + f 2
0 /c2

. (14.118)

This is the dispersion relation for Rossby waves. The asymmetry of the dispersion
relation with respect to k and l signifies that the wave motion is not isotropic in
the horizontal, which is expected because of the β-effect. Although we have derived
it for a single homogeneous layer, it is equally applicable to stratified flows if c is
replaced by the corresponding internal value, which is c =

√
g′H for the reduced

gravity model (see Chapter 7, Section 17) and c = NH/nπ for the nth mode of a
continuously stratified model. For the barotropic mode c is very large, and f 2

0 /c2 is
usually negligible in the denominator of equation (14.118).

The dispersion relation ω(k, l) in equation (14.118) can be displayed as a surface,
taking k and l along the horizontal axes and ω along the vertical axis. The section of
this surface along l = 0 is indicated in the upper panel of Figure 14.28, and sections
of the surface for three values of ω are indicated in the bottom panel. The contours
of constant ω are circles because the dispersion relation (14.118) can be written as

(
k + β

2ω

)2

+ l2 =
(

β

2ω

)2

− f 2
0

c2 .

The definition of group velocity

cg = i
∂ω

∂k
+ j

∂ω

∂l
,

shows that the group velocity vector is the gradient of ωin the wavenumber space. The
direction of cg is therefore perpendicular to the ω contours, as indicated in the lower
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Figure 14.28 Dispersion relation ω(k, l) for a Rossby wave. The upper panel shows ω vs k for l = 0.
Regions of positive and negative group velocity cgx are indicated. The lower panel shows a plan view of the
surface ω(k, l), showing contours of constant ω on a kl-plane. The values of ωf0/βc for the three circles
are 0.2, 0.3, and 0.4. Arrows perpendicular to ω contours indicate directions of group velocity vector cg .
A. E. Gill, Atmosphere–Ocean Dynamics, 1982 and reprinted with the permission of Academic Press and
Mrs. Helen Saunders-Gill.

panel of Figure 14.28. For l = 0, the maximum frequency and zero group speed
are attained at kc/f0 = −1, corresponding to ωmaxf0/βc = 0.5. The maximum
frequency is much smaller than the Coriolis frequency. For example, in the ocean
the ratio ωmax/f0 = 0.5βc/f 2

0 is of order 0.1 for the barotropic mode, and of order
0.001 for a baroclinic mode, taking a typical midlatitude value of f0 ∼ 10−4 s−1,
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a barotropic gravity wave speed of c ∼ 200 m/s, and a baroclinic gravity wave speed
of c ∼ 2 m/s. The shortest period of midlatitude baroclinic Rossby waves in the ocean
can therefore be more than a year.

The eastward phase speed is

cx = ω

k
= − β

k2 + l2 + f 2
0 /c2

. (14.119)

The negative sign shows that the phase propagation is always westward. The phase
speed reaches a maximum when k2+l2 → 0, corresponding to very large wavelengths
represented by the region near the origin of Figure 14.28. In this region the waves are
nearly nondispersive and have an eastward phase speed

cx ≃ −βc2

f 2
0

.

With β = 2 × 10−11 m−1 s−1, a typical baroclinic value of c ∼ 2 m/s, and a mid-
latitude value of f0 ∼ 10−4 s−1, this gives cx ∼ 10−2 m/s. At these slow speeds the
Rossby waves would take years to cross the width of the ocean at midlatitudes. The
Rossby waves in the ocean are therefore more important at lower latitudes, where
they propagate faster. (The dispersion relation (14.118), however, is not valid within
a latitude band of 3◦ from the equator, for then the assumption of a near geostrophic
balance breaks down. A different analysis is needed in the tropics. A discussion of
the wave dynamics of the tropics is given in Gill (1982) and in the review paper by
McCreary (1985).) In the atmosphere c is much larger, and consequently the Rossby
waves propagate faster. A typical large atmospheric disturbance can propagate as a
Rossby wave at a speed of several meters per second.

Frequently, the Rossby waves are superposed on a strong eastward mean current,
such as the atmospheric jet stream. If U is the speed of this eastward current, then the
observed eastward phase speed is

cx = U − β

k2 + l2 + f 2
0 /c2

. (14.120)

Stationary Rossby waves can therefore form when the eastward current cancels the
westward phase speed, giving cx = 0. This is how stationary waves are formed down-
stream of the topographic step in Figure 14.20. A simple expression for the wavelength
results if we assume l = 0 and the flow is barotropic, so that f 2

0 /c2 is negligible in
equation (14.120). This gives U = β/k2 for stationary solutions, so that the wave-
length is 2π

√
U/β.

Finally, note that we have been rather cavalier in deriving the quasi-geostrophic
vorticity equation in this section, in the sense that we have substituted the approximate
geostrophic expressions for velocity without a formal ordering of the scales. Gill
(1982) has given a more precise derivation, expanding in terms of a small parameter.
Another way to justify the dispersion relation (14.118) is to obtain it from the general
dispersion relation (14.76) derived in Section 10:
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ω3 − c2ω(k2 + l2) − f 2
0 ω − c2βk = 0. (14.121)

For ω ≪ f , the first term is negligible compared to the third, reducing
equation (14.121) to equation (14.118).

16. Barotropic Instability
In Chapter 12, Section 9 we discussed the inviscid stability of a shear flow U(y) in a
nonrotating system, and demonstrated that a necessary condition for its instability is
that d2U/dy2 must change sign somewhere in the flow. This was called Rayleigh’s
point of inflection criterion. In terms of vorticity ζ̄ = −dU/dy, the criterion states
that d ζ̄/dy must change sign somewhere in the flow. We shall now show that, on a
rotating earth, the criterion requires that d(ζ̄ + f )/dy must change sign somewhere
within the flow.

Consider a horizontal currentU(y) in a medium of uniform density. In the absence
of horizontal density gradients only the barotropic mode is allowed, and U(y) does
not vary with depth. The vorticity equation is

(
∂

∂t
+ u • ∇

)
(ζ + f ) = 0. (14.122)

This is identical to the potential vorticity equation D/Dt[(ζ + f )/h] = 0, with the
added simplification that the layer depth is constant because w = 0. Let the total flow
be decomposed into background flow plus a disturbance:

u = U(y) + u′,
v = v′.

The total vorticity is then

ζ = ζ̄ + ζ ′ = −dU

dy
+

(
∂v′

∂x
− ∂u′

∂y

)
= −dU

dy
+ ∇2ψ,

where we have defined the perturbation streamfunction

u′ = −∂ψ

∂y
, v′ = ∂ψ

∂x
.

Substituting into equation (14.122) and linearizing, we obtain the perturbation vor-
ticity equation

∂

∂t
(∇2ψ) + U

∂

∂x
(∇2ψ) +

(
β − d2U

dy2

)
∂ψ

∂x
= 0. (14.123)
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Because the coefficients of equation (14.123) are independent of x and t , there can
be solutions of the form

ψ = ψ̂(y) eik(x−ct).

The phase speed c is complex and solutions are unstable if its imaginary part ci > 0.
The perturbation vorticity equation (14.123) then becomes

(U − c)

[
d2

dy2 − k2
]

ψ̂ +
[
β − d2U

dy2

]
ψ̂ = 0.

Comparing this with equation (12.76) derived without Coriolis forces, it is seen that
the effect of planetary rotation is the replacement of −d2U/dy2 by (β − d2U/dy2).
The analysis of the section therefore carries over to the present case, resulting in the
following criterion: A necessary condition for the inviscid instability of a barotropic
current U(y) is that the gradient of the absolute vorticity

d

dy
(ζ̄ + f ) = β − d2U

dy2 , (14.124)

must change sign somewhere in the flow. This result was first derived by Kuo (1949).
Barotropic instability quite possibly plays an important role in the instability of

currents in the atmosphere and in the ocean. The instability has no preference for any
latitude, because the criterion involves β and not f . However, the mechanism presum-
ably dominates in the tropics because midlatitude disturbances prefer the baroclinic
instability mechanism discussed in the following section. An unstable distribution of
westward tropical wind is shown in Figure 14.29.

Figure 14.29 Profiles of velocity and vorticity of a westward tropical wind. The velocity distribution is
barotropically unstable as d(ζ̄ + f )/dy changes sign within the flow. J. T. Houghton, The Physics of the
Atmosphere, 1986 and reprinted with the permission of Cambridge University Press.
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17. Baroclinic Instability
The weather maps at midlatitudes invariably show the presence of wavelike horizontal
excursions of temperature and pressure contours, superposed on eastward mean flows
such as the jet stream. Similar undulations are also found in the ocean on eastward
currents such as the Gulf Stream in the north Atlantic. A typical wavelength of these
disturbances is observed to be of the order of the internal Rossby radius, that is, about
4000 km in the atmosphere and 100 km in the ocean. They seem to be propagating as
Rossby waves, but their erratic and unexpected appearance suggests that they are not
forced by any external agency, but are due to an inherent instability of midlatitude
eastward flows. In other words, the eastward flows have a spontaneous tendency
to develop wavelike disturbances. In this section we shall investigate the instability
mechanism that is responsible for the spontaneous relaxation of eastward jets into a
meandering state.

The poleward decrease of the solar irradiation results in a poleward decrease of
the temperature and a consequent increase of the density. An idealized distribution of
the atmospheric density in the northern hemisphere is shown in Figure 14.30. The den-
sity increases northward due to the lower temperatures near the poles and decreases
upward because of static stability. According to the thermal wind relation (14.15),
an eastward flow (such as the jet stream in the atmosphere or the Gulf Stream in
the Atlantic) in equilibrium with such a density structure must have a velocity that
increases with height. A system with inclined density surfaces, such as the one in
Figure 14.30, has more potential energy than a system with horizontal density sur-
faces, just as a system with an inclined free surface has more potential energy than a
system with a horizontal free surface. It is therefore potentially unstable because
it can release the stored potential energy by means of an instability that would
cause the density surfaces to flatten out. In the process, vertical shear of the mean
flow U(z) would decrease, and perturbations would gain kinetic energy.

Instability of baroclinic jets that release potential energy by flattening out the
density surfaces is called the baroclinic instability. Our analysis would show that the
preferred scale of the unstable waves is indeed of the order of the Rossby radius, as
observed for the midlatitude weather disturbances. The theory of baroclinic instability

Figure 14.30 Lines of constant density in the northern hemispheric atmosphere. The lines are nearly
horizontal and the slopes are greatly exaggerated in the figure. The velocity U(z) is into the plane of
paper.
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was developed in the 1940s by Bjerknes et al. and is considered one of the major
triumphs of geophysical fluid mechanics. Our presentation is essentially based on the
review article by Pedlosky (1971).

Consider a basic state in which the density is stably stratified in the vertical
with a uniform buoyancy frequency N , and increases northward at a constant rate
∂ρ̄/∂y. According to the thermal wind relation, the constancy of ∂ρ̄/∂y requires that
the vertical shear of the basic eastward flow U(z) also be constant. The β-effect is
neglected as it is not an essential requirement of the instability. (The β-effect does
modify the instability, however.) This is borne out by the spontaneous appearance of
undulations in laboratory experiments in a rotating annulus, in which the inner wall
is maintained at a higher temperature than the outer wall. The β-effect is absent in
such an experiment.

Perturbation Vorticity Equation

The equations for total flow are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = − 1

ρ0

∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = − 1

ρ0

∂p

∂y
,

0 = −∂p

∂z
− ρg, (14.125)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0,

where ρ0 is a constant reference density. We assume that the total flow is composed of
a basic eastward jet U(z) in geostrophic equilibrium with the basic density structure
ρ̄(y, z) shown in Figure 14.30, plus perturbations. That is,

u = U(z) + u′(x, y, z),

v = v′(x, y, z),

w = w′(x, y, z),

ρ = ρ̄(y, z) + ρ′(x, y, z),

p = p̄(y, z) + p′(x, y, z).

(14.126)

The basic flow is in geostrophic and hydrostatic balance:

f U = − 1
ρ0

∂p̄

∂y
,

0 = −∂p̄

∂z
− ρ̄g.

(14.127)
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Eliminating the pressure, we obtain the thermal wind relation

dU

dz
= g

fρ0

∂ρ̄

∂y
, (14.128)

which states that the eastward flow must increase with height because ∂ρ̄/∂y > 0.
For simplicity, we assume that ∂ρ̄/∂y is constant, and that U = 0 at the surface z = 0.
Thus the background flow is

U = U0z

H
,

where U0 is the velocity at the top of the layer at z = H .
We first form a vorticity equation by cross differentiating the horizontal equations

of motion in equation (14.125), obtaining

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
− (ζ + f )

∂w

∂z
= 0. (14.129)

This is identical to equation (14.92), except for the exclusion of the β-effect here; the
algebraic steps are therefore not repeated. Substituting the decomposition (14.126),
and noting that ζ = ζ ′ because the basic flow U = U0z/H has no vertical component
of vorticity, (14.129) becomes

∂ζ ′

∂t
+ U

∂ζ ′

∂x
− f

∂w′

∂z
= 0, (14.130)

where the nonlinear terms have been neglected. This is the perturbation vorticity
equation, which we shall now write in terms of p′.

Assume that the perturbations are large-scale and slow, so that the velocity is
nearly geostrophic:

u′ ≃ − 1
ρ0f

∂p′

∂y
, v′ ≃ 1

ρ0f

∂p′

∂x
, (14.131)

from which the perturbation vorticity is found as

ζ ′ = 1
ρ0f

∇2
Hp′. (14.132)

We now express w′ in equation (14.130) in terms of p′. The density equation gives

∂

∂t
(ρ̄ + ρ′) + (U + u′)

∂

∂x
(ρ̄ + ρ′) + v′ ∂

∂y
(ρ̄ + ρ′) + w′ ∂

∂z
(ρ̄ + ρ′) = 0.

Linearizing, we obtain

∂ρ′

∂t
+ U

∂ρ′

∂x
+ v′ ∂ρ̄

∂y
− ρ0N

2w′

g
= 0, (14.133)
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where N2 = −gρ−1
0 (∂ρ̄/∂z). The perturbation density ρ′ can be written in terms of

p′ by using the hydrostatic balance in equation (14.125), and subtracting the basic
state (14.127). This gives

0 = −∂p′

∂z
− ρ′g, (14.134)

which states that the perturbations are hydrostatic. Equation (14.133) then gives

w′ = − 1
ρ0N2

[(
∂

∂t
+ U

∂

∂x

)
∂p′

∂z
− dU

dz

∂p′

∂x

]
, (14.135)

where we have written ∂ρ̄/∂y in terms of the thermal wind dU/dz. Using equa-
tions (14.132) and (14.135), the perturbation vorticity equation (14.130) becomes

(
∂

∂t
+ U

∂

∂x

) [
∇2

Hp′ + f 2

N2

∂2p′

∂z2

]
= 0. (14.136)

This is the equation that governs the quasi-geostrophic perturbations on an eastward
current U(z).

Wave Solution

We assume that the flow is confined between two horizontal planes at z = 0 and
z = H and that it is unbounded in x and y. Real flows are likely to be bounded in the
y direction, especially in a laboratory situation of flow in an annular region, where the
walls set boundary conditions parallel to the flow. The boundedness in y, however,
simply sets up normal modes in the form sin(nπy/L), where L is the width of the
channel. Each of these modes can be replaced by a periodicity in y. Accordingly, we
assume wavelike solutions

p′ = p̂(z) ei(kx+ly−ωt). (14.137)

The perturbation vorticity equation (14.136) then gives

d2p̂

dz2 − α2p̂ = 0, (14.138)

where

α2 ≡ N2

f 2 (k2 + l2). (14.139)

The solution of equation (14.138) can be written as

p̂ = A cosh α

(
z − H

2

)
+ B sinh α

(
z − H

2

)
. (14.140)
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Boundary conditions have to be imposed on solution (14.140) in order to derive an
instability criterion.

Boundary Conditions

The conditions are

w′ = 0 at z = 0, H.

The corresponding conditions on p′ can be found from equation (14.135) and
U = U0z/H . We obtain

− ∂2p′

∂t ∂z
− U0z

H

∂2p′

∂x ∂z
+ U0

H

∂p′

∂x
= 0 at z = 0, H,

where we have also used U = U0z/H . The two boundary conditions are therefore

∂2p′

∂t ∂z
− U0

H

∂p′

∂x
= 0 at z = 0,

∂2p′

∂t ∂z
− U0

H

∂p′

∂x
+ U0

∂2p′

∂x ∂z
= 0 at z = H.

Instability Criterion

Using equations (14.137) and (14.140), the foregoing boundary conditions require

A

[
αc sinh

αH

2
− U0

H
cosh

αH

2

]

+ B

[
−αc cosh

αH

2
+ U0

H
sinh

αH

2

]
= 0,

A

[
α(U0 − c) sinh

αH

2
− U0

H
cosh

αH

2

]

+ B

[
α(U0 − c) cosh

αH

2
− U0

H
sinh

αH

2

]
= 0,

where c = ω/k is the eastward phase velocity.
This is a pair of homogeneous equations for the constants A and B. For nontrivial

solutions to exist, the determinant of the coefficients must vanish. This gives, after
some straightforward algebra, the phase velocity

c = U0

2
± U0

αH

√(
αH

2
− tanh

αH

2

) (
αH

2
− coth

αH

2

)
. (14.141)

Whether the solution grows with time depends on the sign of the radicand. The
behavior of the functions under the radical sign is sketched in Figure 14.31. It is
apparent that the first factor in the radicand is positive because αH/2 > tanh(αH/2)
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Figure 14.31 Baroclinic instability. The upper panel shows behavior of the functions in equation (14.141),
and the lower panel shows growth rates of unstable waves.

for all values of αH . However, the second factor is negative for small values of αH

for which αH/2 < coth(αH/2). In this range the roots of c are complex conjugates,
with c = U0/2± ici . Because we have assumed that the perturbations are of the form
exp(−ikct), the existence of a nonzero ci implies the possibility of a perturbation
that grows as exp(kci t), and the solution is unstable. The marginal stability is given
by the critical value of α satisfying

αcH

2
= coth

(
αcH

2

)
,

whose solution is

αcH = 2.4,

and the flow is unstable if αH < 2.4. Using the definition of α in equation (14.139),
it follows that the flow is unstable if

HN

f
<

2.4√
k2 + l2

.
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As all values of k and l are allowed, we can always find a value of k2 + l2 low enough
to satisfy the forementioned inequality. The flow is therefore always unstable (to low
wavenumbers). For a north–south wavenumber l = 0, instability is ensured if the
east–west wavenumber k is small enough such that

HN

f
<

2.4
k

. (14.142)

In a continuously stratified ocean, the speed of a long internal wave for the n = 1
baroclinic mode is c = NH/π , so that the corresponding internal Rossby radius is
c/f = NH/πf . It is usual to omit the factor π and define the Rossby radius in a
continuously stratified fluid as

0 ≡ HN

f
.

The condition (14.142) for baroclinic instability is therefore that the east–west wave-
length be large enough so that

λ > 2.60.

However, the wavelength λ = 2.60 does not grow at the fastest rate. It can be
shown from equation (14.141) that the wavelength with the largest growth rate is

λmax = 3.90.

This is therefore the wavelength that is observed when the instability develops. Typical
values for f , N , and H suggest that λmax ∼ 4000 km in the atmosphere and 200 km
in the ocean, which agree with observations. Waves much smaller than the Rossby
radius do not grow, and the ones much larger than the Rossby radius grow very slowly.

Energetics

The foregoing analysis suggests that the existence of “weather waves” is due to the
fact that small perturbations can grow spontaneously when superposed on an eastward
current maintained by the sloping density surfaces (Figure 14.30). Although the basic
current does have a vertical shear, the perturbations do not grow by extracting energy
from the vertical shear field. Instead, they extract their energy from the potential
energy stored in the system of sloping density surfaces. The energetics of the baroclinic
instability is therefore quite different than that of the Kelvin–Helmholtz instability
(which also has a vertical shear of the mean flow), where the perturbation Reynolds
stress u′w′ interacts with the vertical shear and extracts energy from the mean shear
flow. The baroclinic instability is not a shear flow instability; the Reynolds stresses
are too small because of the small w in quasi-geostrophic large-scale flows.

The energetics of the baroclinic instability can be understood by examining the
equation for the perturbation kinetic energy. Such an equation can be derived by
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multiplying the equations for ∂u′/∂t and ∂v′/∂t by u′ and v′, respectively, adding
the two, and integrating over the region of flow. Because of the assumed periodicity
in x and y, the extent of the region of integration is chosen to be one wavelength in
either direction. During this integration, the boundary conditions of zero normal flow
on the walls and periodicity in x and y are used repeatedly. The procedure is similar
to that for the derivation of equation (12.83) and is not repeated here. The result is

dK

dt
= −g

∫
w′ρ′ dx dy dz,

where K is the global perturbation kinetic energy

K ≡ ρ0

2

∫
(u′2 + v′2) dx dy dz.

In unstable flows we must have dK/dt > 0, which requires that the volume inte-
gral of w′ρ′ must be negative. Let us denote the volume average of w′ρ′ by w′ρ′.
A negative w′ρ′ means that on the average the lighter fluid rises and the heavier fluid
sinks. By such an interchange the center of gravity of the system, and therefore its
potential energy, is lowered. The interesting point is that this cannot happen in a stably
stratified system with horizontal density surfaces; in that case an exchange of fluid
particles raises the potential energy. Moreover, a basic state with inclined density
surfaces (Figure 14.30) cannot have w′ρ′ < 0 if the particle excursions are vertical.
If, however, the particle excursions fall within the wedge formed by the constant den-
sity lines and the horizontal (Figure 14.32), then an exchange of fluid particles takes
lighter particles upward (and northward) and denser particles downward (and south-
ward). Such an interchange would tend to make the density surfaces more horizontal,
releasing potential energy from the mean density field with a consequent growth of the

Figure 14.32 Wedge of instability (shaded) in a baroclinic instability. The wedge is bounded by constant
density lines and the horizontal. Unstable waves have a particle trajectory that falls within the wedge.
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perturbation energy. This type of convection is called sloping convection. According
to Figure 14.32 the exchange of fluid particles within the wedge of instability results
in a net poleward transport of heat from the tropics, which serves to redistribute the
larger solar heat received by the tropics.

In summary, baroclinic instability draws energy from the potential energy of
the mean density field. The resulting eddy motion has particle trajectories that are
oriented at a small angle with the horizontal, so that the resulting heat transfer has a
poleward component. The preferred scale of the disturbance is the Rossby radius.

18. Geostrophic Turbulence
Two common modes of instability of a large-scale current system were presented in the
preceding sections. When the flow is strong enough, such instabilities can make a flow
chaotic or turbulent. A peculiarity of large-scale turbulence in the atmosphere or the
ocean is that it is essentially two dimensional in nature. The existence of the Coriolis
force, stratification, and small thickness of geophysical media severely restricts the
vertical velocity in large-scale flows, which tend to be quasi-geostrophic, with the
Coriolis force balancing the horizontal pressure gradient to the lowest order. Because
vortex stretching, a key mechanism by which ordinary three-dimensional turbulent
flows transfer energy from large to small scales, is absent in two-dimensional flow,
one expects that the dynamics of geostrophic turbulence are likely to be fundamen-
tally different from that of three-dimensional laboratory-scale turbulence discussed
in Chapter 13. However, we can still call the motion “turbulent” because it is unpre-
dictable and diffusive.

A key result on the subject was discovered by the meteorologist Fjortoft (1953),
and since then Kraichnan, Leith, Batchelor, and others have contributed to various
aspects of the problem. A good discussion is given in Pedlosky (1987), to which the
reader is referred for a fuller treatment. Here, we shall only point out a few important
results.

An important variable in the discussion of two-dimensional turbulence is enstro-
phy, which is the mean square vorticity ζ 2. In an isotropic turbulent field we can
define an energy spectrum S(K), a function of the magnitude of the wavenumber
K , as

u2 =
∫ ∞

0
S(K) dK.

It can be shown that the enstrophy spectrum is K2S(K), that is,

ζ 2 =
∫ ∞

0
K2S(K) dK,

which makes sense because vorticity involves the spatial gradient of velocity.
We consider a freely evolving turbulent field in which the shape of the velocity

spectrum changes with time. The large scales are essentially inviscid, so that both
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energy and enstrophy are nearly conserved:

d

dt

∫ ∞

0
S(K) dK = 0, (14.143)

d

dt

∫ ∞

0
K2S(K) dK = 0, (14.144)

where terms proportional to the molecular viscosity ν have been neglected on
the right-hand sides of the equations. The enstrophy conservation is unique to
two-dimensional turbulence because of the absence of vortex stretching.

Suppose that the energy spectrum initially contains all its energy at wavenumber
K0. Nonlinear interactions transfer this energy to other wavenumbers, so that the
sharp spectral peak smears out. For the sake of argument, suppose that all of the
initial energy goes to two neighboring wavenumbers K1 and K2, with K1 < K0 < K2.
Conservation of energy and enstrophy requires that

S0 = S1 + S2,

K2
0 S0 = K2

1 S1 + K2
2 S2,

where Sn is the spectral energy at Kn. From this we can find the ratios of energy and
enstrophy spectra before and after the transfer:

S1

S2
= K2 − K0

K0 − K1

K2 + K0

K1 + K0
,

K2
1 S1

K2
2 S2

= K2
1

K2
2

K2
2 − K2

0

K2
0 − K2

1

.

(14.145)

As an example, suppose that nonlinear smearing transfers energy to wavenum-
bers K1 = K0/2 and K2 = 2K0. Then equations (14.145) show that S1/S2 = 4 and
K2

1 S1/K
2
2 S2 = 1

4 , so that more energy goes to lower wavenumbers (large scales),
whereas more enstrophy goes to higher wavenumbers (smaller scales). This impor-
tant result on two-dimensional turbulence was derived by Fjortoft (1953). Clearly, the
constraint of enstrophy conservation in two-dimensional turbulence has prevented a
symmetric spreading of the initial energy peak at K0.

The unique character of two-dimensional turbulence is evident here. In small-
scale three-dimensional turbulence studied in Chapter 13, the energy goes to smaller
and smaller scales until it is dissipated by viscosity. In geostrophic turbulence, on the
other hand, the energy goes to larger scales, where it is less susceptible to viscous
dissipation. Numerical calculations are indeed in agreement with this behavior, which
shows that the energy-containing eddies grow in size by coalescing. On the other hand,
the vorticity becomes increasingly confined to thin shear layers on the eddy bound-
aries; these shear layers contain very little energy. The backward (or inverse) energy
cascade and forward enstrophy cascade are represented schematically in Figure 14.33.
It is clear that there are two “inertial” regions in the spectrum of a two-dimensional
turbulent flow, namely, the energy cascade region and the enstrophy cascade region.
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Figure 14.33 Energy and enstrophy cascade in two-dimensional turbulence.

If energy is injected into the system at a rate ε, then the energy spectrum in the
energy cascade region has the form S(K) ∝ ε2/3K−5/3; the argument is essentially
the same as in the case of the Kolmogorov spectrum in three-dimensional turbulence
(Chapter 13, Section 9), except that the transfer is backwards. A dimensional argument
also shows that the energy spectrum in the enstrophy cascade region is of the form
S(K) ∝ α2/3K−3, where α is the forward enstrophy flux to higher wavenumbers.
There is negligible energy flux in the enstrophy cascade region.

As the eddies grow in size, they become increasingly immune to viscous dissipa-
tion, and the inviscid assumption implied in equation (14.143) becomes increasingly
applicable. (This would not be the case in three-dimensional turbulence in which
the eddies continue to decrease in size until viscous effects drain energy out of the
system.) In contrast, the corresponding assumption in the enstrophy conservation
equation (14.144) becomes less and less valid as enstrophy goes to smaller scales,
where viscous dissipation drains enstrophy out of the system. At later stages in the
evolution, then, equation (14.144) may not be a good assumption. However, it can be
shown (see Pedlosky, 1987) that the dissipation of enstrophy actually intensifies the
process of energy transfer to larger scales, so that the red cascade (that is, transfer to
larger scales) of energy is a general result of two-dimensional turbulence.

The eddies, however, do not grow in size indefinitely. They become increasingly
slower as their length scale l increases, while their velocity scale u remains constant.
The slower dynamics makes them increasingly wavelike, and the eddies transform
into Rossby-wave packets as their length scale becomes of order (Rhines, 1975)

l ∼
√

u

β
(Rhines length),
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where β = df/dy and u is the rms fluctuating speed. The Rossby-wave propagation
results in an anisotropic elongation of the eddies in the east–west (“zonal”) direction,
while the eddy size in the north–south direction stops growing at

√
u/β. Finally, the

velocity field consists of zonally directed jets whose north–south extent is of order√
u/β. This has been suggested as an explanation for the existence of zonal jets in

the atmosphere of the planet Jupiter (Williams, 1979). The inverse energy cascade
regime may not occur in the earth’s atmosphere and the ocean at midlatitudes because
the Rhines length (about 1000 km in the atmosphere and 100 km in the ocean) is of
the order of the internal Rossby radius, where the energy is injected by baroclinic
instability. (For the inverse cascade to occur,

√
u/β needs to be larger than the scale

at which energy is injected.)
Eventually, however, the kinetic energy has to be dissipated by molecular effects

at the Kolmogorov microscale η, which is of the order of a few millimeters in the
ocean and the atmosphere. A fair hypothesis is that processes such as internal waves
drain energy out of the mesoscale eddies, and breaking internal waves generate
three-dimensional turbulence that finally cascades energy to molecular scales.

A recent review of intense storm motion (lower atmosphere dynamics and ther-
modynamics) was published by Chan (2005), whereas upper atmospheric motion was
discussed by Haynes (2005). Oceanic flow transport was treated by Wiggins (2005).

Exercises
1. The Gulf Stream flows northward along the east coast of the United States

with a surface current of average magnitude 2 m/s. If the flow is assumed to be in
geostrophic balance, find the average slope of the sea surface across the current at a
latitude of 45◦ N. [Answer: 2.1 cm per km]

2. A plate containing water (ν = 10−6 m2/s) above it rotates at a rate of 10
revolutions per minute. Find the depth of the Ekman layer, assuming that the flow is
laminar.

3. Assume that the atmospheric Ekman layer over the earth’s surface at a latitude
of 45◦ N can be approximated by an eddy viscosity of νv = 10 m2/s. If the geostrophic
velocity above the Ekman layer is 10 m/s, what is the Ekman transport across isobars?
[Answer: 2203 m2/s]

4. Find the axis ratio of a hodograph plot for a semidiurnal tide in the middle
of the ocean at a latitude of 45◦ N. Assume that the midocean tides are rotational
surface gravity waves of long wavelength and are unaffected by the proximity of
coastal boundaries. If the depth of the ocean is 4 km, find the wavelength, the phase
velocity, and the group velocity. Note, however, that the wavelength is comparable to
the width of the ocean, so that the neglect of coastal boundaries is not very realistic.

5. An internal Kelvin wave on the thermocline of the ocean propagates along
the west coast of Australia. The thermocline has a depth of 50 m and has a nearly
discontinuous density change of 2 kg/m3 across it. The layer below the thermocline
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is deep. At a latitude of 30◦ S, find the direction and magnitude of the propagation
speed and the decay scale perpendicular to the coast.

6. Using the dispersion relation m2 = k2(N2 − ω2)/(ω2 − f 2) for internal
waves, show that the group velocity vector is given by

[cgx, cgz] = (N2 − f 2) km

(m2 + k2)3/2(m2f 2 + k2N2)1/2 [m, −k]

[Hint: Differentiate the dispersion relation partially with respect to k and m.] Show
that cg and c are perpendicular and have oppositely directed vertical components.
Verify that cg is parallel to u.

7. Suppose the atmosphere at a latitude of 45◦ N is idealized by a uniformly
stratified layer of height 10 km, across which the potential temperature increases by
50 ◦C.

(i) What is the value of the buoyancy frequency N?
(ii) Find the speed of a long gravity wave corresponding to the n = 1 baroclinic

mode.
(iii) For the n = 1 mode, find the westward speed of nondispersive (i. e., very large

wavelength) Rossby waves. [Answer: N = 0.01279 s−1; c1 = 40.71 m/s;
cx = −3.12 m/s]

8. Consider a steady flow rotating between plane parallel boundaries a distance
L apart. The angular velocity is ) and a small rectilinear velocity U is superposed.
There is a protuberance of height h ≪ L in the flow. The Ekman and Rossby numbers
are both small: Ro ≪ l, E ≪ l. Obtain an integral of the relevant equations of motion
that relates the modified pressure and the streamfunction for the motion, and show
that the modified pressure is constant on streamlines.
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