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The statistical description of turbulent
flows

3.1 The random nature of turbulence
In a turbulent flow, the velocity field U (x, t) is random. What does this
statement mean? Why is it so?

As a first step we need to understand the word ‘random.’ Consider a
fluid-flow experiment that can be repeated many times under a specified set
of conditions, C, and consider an event A, such as A ≡ {U < 10 m s−1},
where U is a specified component of velocity at a specified position and time
(measured from the initiation of the experiment). If the event A inevitably
occurs, then A is certain or sure. If the event A cannot occur, then it is
impossible. The third possibility is that A may occur or it may but need not
occur. In this case the event A is random. Then, in the example A ≡ {U < 10
m s−1}, U is a random variable.

A mistake that is sometimes made is to attribute incorrectly additional
significance to the designation ‘random,’ and then to dispute the fact that
turbulence is a random phenomenon. That the event A is random means
only that it is neither certain nor impossible. That U is a random variable
means only that it does not have a unique value – the same every time
the experiment is repeated under the same set of conditions, C. Figure 3.1
illustrates the values U(n)(n = 1, 2, . . . , 40) taken by the random variable U

on 40 repetitions of the experiment.
The next issue to resolve is the consistency between the random nature of

turbulent flows, and the deterministic nature of classical mechanics embodied
in the Navier–Stokes equations. If the equations of motion are deterministic,
why are the solutions random? The answer lies in the combination of two
observations.

(i) In any turbulent flow there are, unavoidably, perturbations in initial
conditions, boundary conditions, and material properties.

34
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Fig. 3.1. A sketch of the value U(n) of the random velocity variable U on the nth
repetition of a turbulent-flow experiment.

(ii) Turbulent flow fields display an acute sensitivity to such perturbations.

At the outset of our discussion on randomness, we considered ‘a fluid-
flow experiment that can be repeated many times under a specified set of
conditions C.’ An example is the flow of pure water at 20 ◦C through a smooth
straight pipe. It should be appreciated that the conditions, C, thus defined
are incomplete: in practice there are, inevitably, perturbations from these
nominal conditions. There can be perturbations in boundary conditions, for
example, through vibration of the apparatus, or from the detailed finish of
nominally smooth surfaces. There can be perturbations in fluid properties
caused by small inhomogeneities in temperature or by the presence of
impurities, and there can be perturbations in the initial state of the flow.
With care and effort these perturbations can be reduced, but they cannot
be eliminated. Consequently, the nominal conditions C are incomplete, and
hence do not uniquely determine the evolution of the turbulent flow.

The presence of perturbations does not by itself explain the random
nature of turbulent flows – for, indeed, such perturbations are also present
in laminar flows. However, at the high Reynolds numbers of turbulent
flows, the evolution of the flow field is extremely sensitive to small changes
in initial conditions, boundary conditions, and material properties. This
sensitivity is well understood in the study of dynamical systems, and has
been popularized in books on chaos (e.g., Gleick (1988) and Moon (1992)).
It is now demonstrated using the Lorenz equations.

Lorenz (1963) studied a time-dependent system, characterized by three
state variables, x(t), y(t), and z(t). These variables evolve according to the
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Fig. 3.2. Time histories from the Lorenz equations (Eqs. (3.1)): (a) x(t) from the initial
condition Eq. (3.2); (b) x̂(t) from the slightly different initial condition Eq. (3.3); and
(c) the difference x̂(t) − x(t).

ordinary differential equations

ẋ = σ(y − x),

ẏ = ρx − y − xz,

ż = −βz + xy, (3.1)

where the coefficients are σ = 10, β = 8
3
, and ρ = 28. For the initial condition

[x(0), y(0), z(0)] = [0.1, 0.1, 0.1], (3.2)

Fig. 3.2(a) shows the time history x(t) obtained from the numerical integra-
tion of Eqs. (3.1). The result obtained – denoted by x̂(t) – with the slightly
different initial condition

[x(0), y(0), z(0)] = [0.100 001, 0.1, 0.1], (3.3)

is shown in Fig. 3.2(b). It may be observed that (as expected) x(t) and
x̂(t) are initially indistinguishable, but by t = 35 they are quite different.
This observation is made clearer in Fig. 3.2(c), which shows the difference
x̂(t) − x(t).
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A consequence of this extreme sensitivity to initial conditions is that –
beyond some point – the state of the system cannot be predicted. In this
example, if the initial state is known only to within 10−6, then Fig. 3.2 clearly
shows that no useful prediction can be made beyond t = 35.

This example serves to demonstrate that a simple set of deterministic
equations – much simpler than the Navier–Stokes equations – can exhibit
acute sensitivity to initial conditions, and hence unpredictability.

The qualitative behavior of the Lorenz system depends on the coefficients.
In particular, for the fixed values σ = 10 and β = 8

3
, the behavior depends

on ρ. If ρ is less than a critical value ρ∗ ≈ 24.74, then the system goes to a
stable fixed point, i.e., the state variables [x(t), y(t), z(t)] tend asymptotically
to fixed values. However, for ρ > ρ∗ (e.g., ρ = 28 as in Fig. 3.2) chaotic
behavior ensues. Again, there is a similarity to the Navier–Stokes equations,
which (with steady boundary conditions) have steady solutions at sufficiently
low Reynolds number, but chaotic, turbulent solutions at high Re. Further
discussions of the Lorenz equations, dynamical systems and equations, dy-
namical systems, and chaos are contained in the books of Guckenheimer
and Holmes (1983), Moon (1992), and Gleick (1988).

3.2 Characterization of random variables
For a laminar flow, we can use theory (i.e., the Navier–Stokes equations) to
calculate U (a particular component of the velocity at a specified position
and time), and we can perform an experiment to measure U. From a century
of experience, we have a high degree of confidence that the calculated and
measured values of U will agree (to within small numerical and experimental
errors).

The Navier–Stokes equations apply equally to turbulent flows, but here
the aim of theory must be different. Since U is a random variable, its value
is inherently unpredictable: a theory that predicts a particular value for U is
almost certain to be wrong. A theory can, however, aim at determining the
probability of events such as A ≡ {U < 10 m s−1}.

In this section we develop the concepts and tools used to characterize
a random variable such as U. In particular U is completely characterized
by its probability density function (PDF). The random velocity field U (x, t)
in a turbulent flow is a much more complicated mathematical object than
the single random variable U. In subsequent sections we introduce some
quantities used to characterize sets of random variables (e.g., U1, U2, and
U3), random functions of time (e.g., U(t)), and random functions of position
(e.g., U(x)).
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Fig. 3.3. Sketches of the sample space of U showing the regions corresponding to the
events (a) B ≡ {U < Vb}, and (b) C ≡ {Va ≤ U < Vb}.

Sample space

In order to be able to discuss more general events than A ≡ {U < 10 m s−1},
we introduce an independent velocity variable V , which is referred to as the
sample-space variable corresponding to U. As illustrated in Fig. 3.3, different
events such as

B ≡ {U < Vb}, (3.4)

C ≡ {Va ≤ U < Vb}, for Va < Vb, (3.5)

correspond to different regions of the sample space.

Probability

The probability of the event B, for example, is written

p = P (B) = P {U < Vb}. (3.6)

For the moment, the reader’s intuitive understanding of probability is suf-
ficient: p is a real number (0 ≤ p ≤ 1) signifying the likelihood of the
occurrence of the event. For an impossible event p is zero; for a sure event
p is unity. (Probability is discussed further in Section 3.8.)

The cumulative distribution function

The probability of any event can be determined from the cumulative distri-
bution function (CDF), which is defined by

F(V ) ≡ P {U < V }. (3.7)
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For example, we have

P (B) = P {U < Vb} = F(Vb), (3.8)

P (C) = P {Va ≤ U < Vb} = P {U < Vb} − P {U < Va}
= F(Vb) − F(Va). (3.9)

The three basic properties of the CDF are

F(−∞) = 0, (3.10)

since {U < −∞} is impossible;

F(∞) = 1, (3.11)

since {U < ∞} is certain; and,

F(Vb) ≥ F(Va), for Vb > Va, (3.12)

since the probability of every event is non-negative, i.e.

F(Vb) − F(Va) = P {Va ≤ U < Vb} ≥ 0. (3.13)

The third property (Eq. (3.12)) expresses the fact that the CDF is a non-
decreasing function.

The probability density function

The probability density function (PDF) is defined to be the derivative of the
CDF:

f(V ) ≡ dF(V )

dV
. (3.14)

It follows simply from the properties of the CDF that the PDF is non-
negative

f(V ) ≥ 0, (3.15)

it satisfies the normalization condition
∫ ∞

−∞
f(V ) dV = 1, (3.16)

and f(−∞) = f(∞) = 0. Further, from Eq. (3.13) it follows that the probabil-
ity of the random variable being in a particular interval equals the integral
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Fig. 3.4. Sketches of (a) the CDF of the random variable U showing the probability
of the event C ≡ {Va ≤ U < Vb}, and (b) the corresponding PDF. The shaded area in
(b) is the probability of C .

of the PDF over that interval:

P {Va ≤ U < Vb} = F(Vb) − F(Va)

=

∫ Vb

Va

f(V ) dV . (3.17)

Figure 3.4 provides a graphical interpretation of this equation.
For an infinitesimal interval, Eq. (3.17) becomes

P {V ≤ U < V + dV } = F(V + dV ) − F(V )

= f(V ) dV . (3.18)

Thus the PDF f(V ) is the probability per unit distance in the sample space
– hence the term ‘probability density function.’ The PDF f(V ) has the
dimensions of the inverse of U, whereas the CDF and the product f(V ) dV



3.2 Characterization of random variables 41

are non-dimensional. Under a change of variables, the transformation rule for
densities (such as PDF’s) is different than that for functions: see Exercise 3.9
on page 49.

It is emphasized that the PDF f(V ) (or equally the CDF) fully character-
izes the random variable U. Two or more random variables that have the
same PDF are said to be identically distributed, or equivalently statistically
identical.

Means and moments

The mean (or expectation) of the random variable U is defined by

⟨U⟩ ≡
∫ ∞

−∞
Vf(V ) dV . (3.19)

It is the probability-weighted average of all possible values of U. More
generally, if Q(U) is a function of U, the mean of Q(U) is

⟨Q(U)⟩ ≡
∫ ∞

−∞
Q(V )f(V ) dV . (3.20)

Even when the condition is not stated explicitly, it should be understood
(here and below) that the mean ⟨Q(U)⟩ exists only if the integral in Eq. (3.20)
converges absolutely.

The rules for taking means are quite simple. If Q(U) and R(U) are functions
of U, and if a and b are constants, then

⟨[aQ(U) + bR(U)]⟩ = a⟨Q(U)⟩ + b⟨R(U)⟩, (3.21)

as may readily be verified from Eq. (3.20). Thus the angled brackets ⟨ ⟩
behave as a linear operator. While U, Q(U), and R(U) are all random
variables, ⟨U⟩, ⟨Q(U)⟩, and ⟨R(U)⟩ are not. Hence the mean of the mean is
the mean: ⟨⟨U⟩⟩ = ⟨U⟩.

The fluctuation in U is defined by

u ≡ U − ⟨U⟩, (3.22)

and the variance is defined to be the mean-square fluctuation:

var(U) ≡ ⟨u2⟩ =

∫ ∞

−∞
(V − ⟨U⟩)2f(V ) dV . (3.23)

The square-root of the variance is the standard deviation

sdev(U) =
√

var (U) = ⟨u2⟩1/2, (3.24)

and is also denoted by u′ and σu, and is also referred to as the r.m.s. (root
mean square) of U.
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The nth central moment is defined to be

µn ≡ ⟨un⟩ =

∫ ∞

−∞
(V − ⟨U⟩)nf(V ) dV . (3.25)

Evidently we have µ0 = 1, µ1 = 0, and µ2 = σ2
u .

(In contrast, the nth moment about the origin – or the nth raw moment –
is defined to be ⟨Un⟩.)

EXERCISES

3.1 With Q and R being random variables, and a and b being constants,
use Eq. (3.20) to verify the relations

⟨a⟩ = a, ⟨aQ⟩ = a⟨Q⟩, (3.26)

⟨Q + R⟩ = ⟨Q⟩ + ⟨R⟩, ⟨⟨Q⟩⟩ = ⟨Q⟩, (3.27)

⟨⟨Q⟩⟨R⟩⟩ = ⟨Q⟩⟨R⟩, ⟨⟨Q⟩R⟩ = ⟨Q⟩⟨R⟩, (3.28)

⟨q⟩ = 0, ⟨q⟨R⟩⟩ = 0, (3.29)

where q ≡ Q − ⟨Q⟩.
3.2 Let Q be defined by

Q = a + bU, (3.30)

where U is a random variable, and a and b are constants. Show that

⟨Q⟩ = a + b⟨U⟩, (3.31)

var(Q) = b2 var(U), (3.32)

sdev(Q) = b sdev(U). (3.33)

Show also that

var(U) = ⟨U2⟩ − ⟨U⟩2. (3.34)

Standardization

It is often convenient to work in terms of standardized random variables,
which, by definition, have zero mean and unit variance. The standardized
random variable Û corresponding to U is

Û ≡ (U − ⟨U⟩)/σu, (3.35)
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and its PDF – the standardized PDF of U – is

f̂(V̂ ) = σuf(⟨U⟩ + σuV̂ ). (3.36)

The moments of Û – the standardized moments of U – are

µ̂n =
⟨un⟩
σn
u

=
µn

σn
u

=

∫ ∞

−∞
V̂ nf̂(V̂ ) dV̂ . (3.37)

Evidently we have µ̂0 = 1, µ̂1 = 0 and µ̂2 = 1. The third standardized moment
µ̂3 is called the skewness, and the fourth µ̂4 is the flatness or kurtosis.

EXERCISE

3.3 Show that the standardized moments of U and Q (defined by
Eq. (3.30)) are identical.

The characteristic function

The characteristic function of the random variable U is defined by

Ψ(s) ≡ ⟨eiUs⟩ =

∫ ∞

−∞
f(V )eiVs dV . (3.38)

It may be recognized that the integral in Eq. (3.38) is an inverse Fourier
transform: Ψ(s) and f(V ) form a Fourier-transform pair, and consequently
they contain the same information.

The characteristic function is a mathematical device that facilitates some
derivations and proofs. Its properties are described in Appendix I. Char-
acteristic functions are used extensively in Chapter 12, but not before.
Consequently a study of Appendix I can be deferred.

3.3 Examples of probability distributions
To consolidate the notions developed, and to illustrate some qualitatively
different behaviors, we now give some specific examples of probability dis-
tributions. These distributions are encountered in later chapters.

The uniform distribution

If U is uniformly distributed in the interval a ≤ V < b, then the PDF of U
is

f(V ) =

⎧
⎨

⎩

1

b − a
, for a ≤ V < b,

0, for V < a and V ≥ b.
(3.39)

This PDF and the corresponding CDF are shown in Fig. 3.5.
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Fig. 3.5. The CDF (a) and the PDF (b) of a uniform random variable (Eq. (3.39)).

EXERCISE

3.4 For the uniform distribution Eq. (3.39) show that

(a) ⟨U⟩ = 1
2
(a + b),

(b) var(U) = 1
12

(b − a)2,

(c) µ̂3 = 0, and

(d) µ̂4 = 9
5
.

The exponential distribution

If U is exponentially distributed with parameter λ, then its PDF (see Fig. 3.6)
is

f(V ) =

⎧
⎨

⎩

1

λ
exp(−V/λ), for V ≥ 0,

0, for V < 0.
(3.40)
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Fig. 3.6. The CDF (a) and PDF (b) of an exponentially distributed random variable
(Eq. (3.40)).

EXERCISE

3.5 For the exponential distribution Eq. (3.40) show that

(a) the normalization condition is satisfied,
(b) ⟨U⟩ = λ,
(c) ⟨Un⟩ = nλ⟨Un−1⟩ = n!λn, for n ≥ 1,
(d) F(V ) = 1 − exp(−V/λ), for V > 0,

= 0, for V ≤ 0, and
(e) Prob{U ≥ aλ} = e−a, for a ≥ 0.

The normal distribution

Of fundamental importance in probability theory is the normal or Gaussian
distribution. If U is normally distributed with mean µ and standard deviation
σ, then the PDF of U is

f(V ) = N (V ; µ, σ2) ≡ 1

σ
√

2π
exp[− 1

2
(V − µ)2/σ2]. (3.41)
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Here N (V ; µ, σ2) – or sometimes N (µ, σ2) – denotes the normal distribution
with mean µ and variance σ2. We can also write

U
D
= N (µ, σ2), (3.42)

to indicate that U is equal in distribution to a normal random variable, i.e.,
the PDF of U is given by Eq. (3.41).

If U is normally distributed according to Eq. (3.41) then

Û ≡ (U − µ)/σ (3.43)

is a standardized Gaussian random variable with PDF

f̂(V ) = N (V ; 0, 1) =
1√
2π

e−V 2/2. (3.44)

This PDF and the corresponding CDF

F̂(V ) =

∫ V

−∞

1√
2π

e−x2/2 dx = 1
2

[
1 + erf(V/

√
2)

]
(3.45)

are shown in Fig. 3.7.

EXERCISE

3.6 By considering the quantity
∫ ∞

−∞

d

dV

(
Vn

√
2π

e−V 2/2

)
dV , (3.46)

obtain a recurrence relation for the standardized moments µ̂n of the
Gaussian distribution. Show that the odd moments (µ̂3, µ̂5, . . .) are
zero, that the kurtosis is

µ̂4 = 3, (3.47)

and that the superskewness is

µ̂6 = 15. (3.48)

The log-normal distribution

We again take U to be normally distributed with mean µ and variance σ2.
Then the positive random variable

Y = eU (3.49)

is, by definition, log-normally distributed.
The CDF FY (y) and PDF fY (y) of Y can be deduced from those of U,
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Fig. 3.7. The CDF (a) and PDF (b) of a standardized Gaussian random variable.

namely F(V ) and f(V ) given by Eq. (3.41). Since Y is positive, the sample
space can be taken to be the positive real line, i.e., y ≥ 0. Starting from the
definition of the CDF, we obtain

FY (y) = P {Y < y} = P {eU < y} = P {U < ln y}
= F(ln y). (3.50)

The PDF is then obtained by differentiating with respect to y:

fY (y) =
d

dy
FY (y) =

1

y
f(ln y)

=
1

yσ
√

2π
exp

[
− 1

2
(ln y − µ)2/σ2

]
. (3.51)

Figure 3.8 shows the PDF fY (y) and the CDF FY (y) for ⟨Y ⟩ = 1 and
various values of the variance. It may be seen that different values of σ2
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produce different shapes of PDF. In particular, a large value of σ2 leads to a
PDF with a long tail, which is most clearly seen in the CDF’s slow approach
to unity. As shown in Exercise 3.7, the normalized variance var(Y /⟨Y ⟩)
increases as eσ

2
.

Equations (3.50) and (3.51) illustrate the transformation rules for PDFs
and CDFs. These are further developed in Exercise 3.9.

EXERCISES

3.7 Show that the raw moments of Y (defined by Eq. (3.49)) are

⟨Y n⟩ = exp(nµ + 1
2
n2σ2). (3.52)

(Hint: evaluate
∫ ∞

−∞ enVf(V ) dV .)

Show that the specification

µ = − 1
2
σ2 (3.53)
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results in ⟨Y ⟩ being unity, and that the variance of Y is

var(Y ) = ⟨Y ⟩2(eσ
2 − 1). (3.54)

3.8 The random variable Z is defined by

Z ≡ aY b, (3.55)

where Y is a log-normal random variable, and a and b are positive
constants. Show that Z is also log-normal with

var(ln Z) = b2 var(ln Y ). (3.56)

3.9 The random variable U has the CDF F(V ) and PDF f(V ). The
random variable Y is defined by

Y = Q(U), (3.57)

where Q(V ) is a monotonically increasing function. Following the
steps in Eqs. (3.50) and (3.51), show that the CDF FY (y) and PDF
fY (y) for Y are given by

FY (y) = F(V ), (3.58)

fY (y) = f(V )

/
dQ(V )

dV
, (3.59)

where

y ≡ Q(V ). (3.60)

Show that the corresponding results for Q(V ) being a monotonically
decreasing function are

FY (y) = 1 − F(V ), (3.61)

fY (y) = −f(V )

/
dQ(V )

dV
. (3.62)

Show that Eqs. (3.59) and (3.62) can be written in the common form

fY (y) dy = f(V ) dV , (3.63)

where dV and

dy ≡
∣∣∣∣
dQ(V )

dV

∣∣∣∣ dV (3.64)

are corresponding infinitesimal intervals.
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The gamma distribution

The positive random variable U, with mean µ and variance σ2, has a gamma
distribution if its PDF is

f(V ) =
1

Γ(α)

(
α

µ

)α

V α−1 exp

(
−αV

µ

)
, (3.65)

where α is defined by

α ≡
(µ

σ

)2

, (3.66)

and Γ(α) is the gamma function

Γ(α) ≡
∫ ∞

0

xα−1e−x dx. (3.67)

For α = 1, this becomes the exponential distribution and the value of the
PDF at the origin is f(0) = 1/µ. For larger values of α (smaller normalized
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variance) the PDF is zero at the origin, whereas for small values of α it is
infinite – as is evident in Fig. 3.9.

EXERCISE

3.10 Use the substitution x = αV/µ to show that the normalized raw
moments of the gamma distribution are

∫ ∞

0

(
V

µ

)n

f(V ) dV =
1

αnΓ(α)

∫ ∞

0

xn+α−1e−x dx

=
Γ(n + α)

αnΓ(α)
=

(n + α− 1)!

αn(α− 1)!
, (3.68)

where the last expression applies for integer n and α.
Verify the consistency of this result for n = 0, 1, and 2.

Delta-function distributions

Suppose that U is a random variable that takes the value a with probability
p, and the value b (b > a) with probability 1 − p. It is straightforward to
deduce the CDF of U:

F(V ) = P {U < V } =

⎧
⎨

⎩

0, for V ≤ a,

p, for a < V ≤ b,

1, for V > b,

(3.69)

see Fig. 3.10. This can be written in terms of Heaviside functions as

F(V ) = pH(V − a) + (1 − p)H(V − b). (3.70)

The corresponding PDF (obtained by differentiating Eq. (3.70)) is

f(V ) = pδ(V − a) + (1 − p)δ(V − b), (3.71)

see Fig. 3.10. (The properties of Dirac delta functions and Heaviside functions
are reviewed in Appendix C.)

A random variable that can take only a finite number of values is a discrete
random variable (as opposed to a continuous random variable). Although the
tools presented in this section are aimed at describing continuous random
variables, evidently (with the aid of Heaviside and Dirac delta functions)
discrete random variables can also be treated. Furthermore, if U is a sure
variable, with probability one of having the value a, its CDF and PDF are
consistently given by

F(V ) = H(V − a), (3.72)

f(V ) = δ(V − a). (3.73)
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Fig. 3.10. The CDF (a) and the PDF (b) of the discrete random variable U, Eq. (3.69).

EXERCISES

3.11 Let U be the outcome of the toss of a fair die, i.e., U = 1, 2, 3, 4, 5,
or 6 with equal probability. Show that the CDF and PDF of U are

F(V ) =
1

6

6∑

n=1

H(V − n), (3.74)

f(V ) =
1

6

6∑

n=1

δ(V − n). (3.75)

Sketch these distributions.

3.12 Let fφ(ψ) be the PDF of a scalar φ that satisfies the boundedness
condition φmin ≤ φ ≤ φmax. For a given value of the mean ⟨φ⟩, the
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maximum possible value of the variance ⟨φ′2⟩ occurs when fφ(ψ)
adopts the double-delta-function distribution

fφ(ψ) = pδ(φmax − ψ) + (1 − p)δ(φmin − ψ). (3.76)

For this distribution show that

p =
⟨φ⟩ − φmin

φmax − φmin

, (3.77)

⟨φ′2⟩ = (φmax − ⟨φ⟩)(⟨φ⟩ − φmin). (3.78)

Note: for φmin = 0, φmax = 1, these results are p = ⟨φ⟩ and ⟨φ′2⟩ =
⟨φ⟩(1 − ⟨φ⟩).

The Cauchy distribution

The mean, variance, and other moments are defined as integrals of the PDF
(Eq. (3.20)). We have implicitly assumed that all such integrals converge; and,
indeed, with few exceptions, this is true for PDFs encountered in turbulence
research. It is useful to have a simple counter-example: this is provided by
the Cauchy distribution.

The PDF of the Cauchy distribution centered at c and with half-width w

is

f(V ) =
w/π

(V − c)2 + w2
. (3.79)

For large V , f varies as V−2, and hence the integral of Vf(V ) diverges as
lnV . Hence, although the distribution is symmetric about its center V = c,
nevertheless the mean (defined by Eq. (3.19)) does not exist. The variance is
infinite.

Figure 3.11 shows the Cauchy density (Eq. (3.79)) and the corresponding
CDF

F(V ) =
1

2
+

1

π
arctan

(
V − c

w

)
, (3.80)

for c = 0, w = 1.

EXERCISE

3.13 The PDF sketched in Fig. 3.12 has mean zero and unit variance (i.e.,
it is standardized). Show that the variables defined in the sketch are
given by

a2 = 6
11

(1 + 2
√

3), b =
√

3 a, h =
1

a + 1
2
b
. (3.81)
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Fig. 3.11. The CDF (a) and PDF (b) for the Cauchy distribution (Eqs. (3.79) and
(3.80)) with c = 0, w = 1.

3.4 Joint random variables
In this section the results obtained for the single random variable U are
extended to two or more random variables. We take as an example the
components of velocity (U1, U2, U3) at a particular position and time in a
turbulent flow.

The sample-space variables corresponding to the random variables U =
{U1, U2, U3} are denoted by V = {V1, V2, V3}. For the two components U1

and U2, Fig. 3.13 shows a scatter plot consisting in the N = 100 points
(V1, V2) = (U(n)

1 , U(n)
2 ), n = 1, 2, . . ., N, where (U(n)

1 , U(n)
2 ) are the values of

(U1, U2) on the nth repetition of the experiment. The CDF of the joint
random variables (U1, U2) is defined by

F12(V1, V2) ≡ P {U1 < V1, U2 < V2}. (3.82)

It is the probability of the sample point (V1, V2) = (U1, U2) lying within the
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Fig. 3.12. A sketch of the standardized PDF in Exercise 3.13.
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Fig. 3.13. A scatter plot in the V1–V2 sample space of 100 samples of the joint random
variables (U1, U2). (In this example U1 and U2 are jointly normal with ⟨U1⟩ = 2,
⟨U2⟩ = 1, ⟨u2

1⟩ = 1, ⟨u2
2⟩ = 5

16
, and ρ12 = 1/

√
5.)

shaded area of Fig. 3.14. Clearly, F12(V1, V2) is a non-decreasing function of
each of its arguments:

F12(V1 +δV1, V2 +δV2) ≥ F12(V1, V2), for all δV1 ≥ 0 and δV2 ≥ 0. (3.83)

Other properties of the CDF are

F12(−∞, V2) = P {U1 < −∞, U2 < V2} = 0, (3.84)

since {U1 < −∞} is impossible; and

F12(∞, V2) = P {U1 < ∞, U2 < V2}
= P {U2 < V2} = F2(V2), (3.85)

since {U1 < ∞} is certain. The CDF F2(V2) of the single random variable
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V2

V 1V1

V2

Fig. 3.14. The V1–V2 sample space showing the region corresponding to the event
{U1 < V 1, U2 < V 2}.

U2 (defined in Eq. (3.85)) is called the marginal CDF. Similarly, the marginal
CDF of U1 is F1(V1) = F12(V1,∞).

The joint PDF (JPDF) of U1 and U2 is defined by

f12(V1, V2) ≡ ∂2

∂V1 ∂V2

F12(V1, V2). (3.86)

Its fundamental property, illustrated in Fig. 3.15, is

P {V1a ≤ U1 < V1b, V2a ≤ U2 ≤ V2b} =

∫ V1b

V1a

∫ V2b

V2a

f12(V1, V2) dV2 dV1. (3.87)

Other properties, that can readily be deduced, are

f12(V1, V2) ≥ 0, (3.88)
∫ ∞

−∞
f12(V1, V2) dV1 = f2(V2), (3.89)

∫ ∞

−∞

∫ ∞

−∞
f12(V1, V2) dV1 dV2 = 1, (3.90)

where f2(V2) is the marginal PDF of U2.
If Q(U1, U2) is a function of the random variables, its mean is defined by

⟨Q(U1, U2)⟩ ≡
∫ ∞

−∞

∫ ∞

−∞
Q(V1, V2)f12(V1, V2) dV1 dV2. (3.91)

The means ⟨U1⟩ and ⟨U2⟩, and the variances ⟨u2
1⟩ and ⟨u2

2⟩, can be determined
from this equation, or equally, from the marginal PDFs f1(V1) and f2(V2)
(see Exercise 3.15). Here u1 and u2 are the fluctuations, e.g., u1 ≡ U1 − ⟨U1⟩.
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V2a
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Fig. 3.15. The V1–V2 sample space showing the region corresponding to the event
{V1a ≤ U1 < V1b, V2a ≤ U2 < V2b}, see Eq. (3.87).

The covariance of U1 and U2 is the mixed second moment

cov(U1, U2) = ⟨u1u2⟩ =

∫ ∞

−∞

∫ ∞

−∞
(V1 − ⟨U1⟩)(V2 − ⟨U2⟩)f12(V1, V2) dV1 dV2,

(3.92)
and the correlation coefficient is

ρ12 ≡ ⟨u1u2⟩/[⟨u2
1⟩⟨u2

2⟩]1/2. (3.93)

As illustrated by the scatter plot in Fig. 3.13, a positive correlation coefficient
arises when positive excursions from the mean for one random variable (e.g.,
u1 > 0) are preferentially associated with positive excursions for the other
(i.e., u2 > 0). Conversely, if positive excursions for u1 are preferentially
associated with negative excursions of u2, as in Fig. 3.16, then the correlation
coefficient is negative. In general, we have the Cauchy–Schwarz inequality

−1 ≤ ρ12 ≤ 1, (3.94)

see Exercise 3.16.
If the correlation coefficient ρ12 is zero (which implies that the covariance

⟨u1u2⟩ is zero) then the random variables U1 and U2 are uncorrelated. In
contrast, if ρ12 is unity, U1 and U2 are perfectly correlated; and, if ρ12 equals
−1, they are perfectly negatively correlated. Examples of these correlations
are given in Exercise 3.17.

For the scatter plot shown in Fig. 3.16, it is clear that the samples with
U1 ≈ V1a and those with U1 ≈ V1b are likely to have significantly different
values of U2. This is confirmed in Fig. 3.17, which shows f12(V1, V2) for
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Fig. 3.16. A scatter plot of negatively correlated random variables (⟨U1⟩ = 1, ⟨U2⟩ =

−1, ⟨u2
1⟩ = 2, ⟨u2

2⟩ = 12, and ρ12 = −
√
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Fig. 3.17. The joint PDF of the distribution shown in Fig. 3.16, plotted against V2 for
V1 = V1a = 1 and V1 = V1b = 5.

V1 = V1a and V1 = V1b. For fixed V1a, f12(V1a, V2) indicates how U2 is
distributed for samples (U1, U2) with U1 = V1a. These ideas are made precise
by defining conditional PDFs: the PDF of U2 conditional on U1 = V1 is

f2|1(V2|V1) ≡ f12(V1, V2)/f1(V1). (3.95)
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This is simply the joint PDF f12, scaled so that it satisfies the normalization
condition ∫ ∞

−∞
f2|1(V2|V1) dV2 = 1. (3.96)

For given V1, if f1(V1) is zero, then f2|1(V2|V1) is undefined. Otherwise it is
readily verified that f2|1(V2|V1) satisfies all the conditions of a PDF (i.e., it is
non-negative, and satisfies the normalization condition, Eq. (3.96)). (A word
on notation: ‘|V1’ is an abbreviation for ‘|U1 = V1,’ and is read ‘conditional
on U1 = V1,’ or ‘given U1 = V1’, or ‘given V1.’)

For a function Q(U1, U2), the conditional mean (conditional on V1) ⟨Q|V1⟩
is defined by

⟨Q(U1, U2)|U1 = V1⟩ ≡
∫ ∞

−∞
Q(V1, V2)f2|1(V2|V1) dV2. (3.97)

The concept of independence is of paramount importance. If U1 and U2

are independent, then knowledge of the value of either one of them provides
no information about the other. Consequently, ‘conditioning’ has no effect,
and the conditional and marginal PDFs are the same:

f2|1(V2|V1) = f2(V2), for U1 and U2 independent. (3.98)

Hence (from Eq. (3.95)) the joint PDF is the product of the marginals:

f12(V1, V2) = f1(V1)f2(V2), for U1 and U2 independent. (3.99)

Independent random variables are uncorrelated; but, in general, the converse
is not true.

EXERCISES

3.14 Show that the properties of the joint PDF Eqs. (3.87)–(3.90) fol-
low from the definitions of the CDF (Eq. (3.82)) and joint PDF
(Eq. (3.86)).

3.15 Show that, for a function R(U1) of U1 alone, the definition of the
mean ⟨R(U1)⟩ in terms of the joint PDF f12 (Eq. (3.91)) is consistent
with its definition in terms of the marginal PDF f1 (Eq. (3.20)).

3.16 By considering the quantity (u1/u
′
1 ± u2/u

′
2)

2, establish the Cauchy–
Schwarz inequality

−1 ≤ ρ12 ≤ 1, (3.100)

where u′
1 and u′

2 are the standard deviations of U1 and U2, and ρ12 is
the correlation coefficient.
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3.17 Let U1 and U3 be uncorrelated random variables, and let U2 be
defined by

U2 = a + bU1 + cU3, (3.101)

where a, b, and c are constants. Show that the correlation coefficient
ρ12 is

ρ12 =
b

(b2 + c2⟨u2
3⟩/⟨u2

1⟩)1/2
. (3.102)

Hence show that U1 and U2 are

(a) uncorrelated (ρ12 = 0) if b is zero and c is non-zero,

(b) perfectly correlated (ρ12 = 1) if c is zero and b is positive, and

(c) perfectly negatively correlated (ρ12 = −1) if c is zero and b is
negative.

3.18 For the sum of two random variables, obtain the result

var(U1 + U2) = var(U1) + var(U2) + 2 cov(U1, U2). (3.103)

For the sum of N independent random variables obtain the result

var

(
N∑

i=1

Ui

)
=

N∑

i=1

var(Ui). (3.104)

3.19 Let U1 be a standardized Gaussian random variable, and let U2 be
defined by U2 = |U1|. Sketch the possible values of (U1, U2) in the
V1–V2 sample space. Show that U1 and U2 are uncorrelated. Argue
that the conditional PDF of U2 is

f2|1(V2|V1) = δ(V2 − |V1|), (3.105)

and hence that U2 and U1 are not independent.

3.20 For any function R(U1), starting from Eq. (3.97), verify the result

⟨R(U1)|V1⟩ = R(V1). (3.106)

3.21 Show that the unconditional mean can be obtained from the condi-
tional mean by

⟨Q(U1, U2)⟩ =

∫ ∞

−∞
⟨Q|V1⟩f1(V1) dV1. (3.107)
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3.5 Normal and joint-normal distributions
In this section we introduce the central-limit theorem which (among other
things) shows that the normal or Gaussian distribution (Eq. (3.41)) plays a
central role in probability theory. Then the joint-normal distribution and its
special properties are described. Many of the results given are most easily
obtained via characteristic functions (Appendix I).

We begin by examining ensemble averages. Let U denote a component
of velocity at a particular position and time in a repeatable turbulent-flow
experiment, and let U(n) denote U on the nth repetition. Each repetition is
performed under the same nominal conditions, and there is no dependence
between different repetitions. Hence, the random variables {U(1), U(2), U(3), . . .}
are independent and have the same distribution (i.e., that of U): they are
said to be independent and identically distributed (i.i.d.).

The ensemble average (over N repetitions) is defined by

⟨U⟩N ≡ 1

N

N∑

n=1

U(n). (3.108)

The ensemble average is itself a random variable, and it is simple to show
that its mean and variance are

⟨⟨U⟩N⟩ = ⟨U⟩, (3.109)

var(⟨U⟩N) =
1

N
var(U) =

σ2
u

N
. (3.110)

Consequently (see Exercise 3.22) Û defined by

Û = [⟨U⟩N − ⟨U⟩]N1/2/σu (3.111)

is a standardized random variable (i.e., ⟨Û⟩ = 0, ⟨Û2⟩ = 1).
The central-limit theorem states that, as N tends to infinity, the PDF of

Û, f̂(V ), tends to the standardized normal distribution

f̂(V ) =
1√
2π

exp (− 1
2
V 2), (3.112)

(see Fig. 3.7 on page 47 and Exercise I.3 on page 709). This result depends
on {U(1), U(2), . . . , U(N)} being i.i.d. but the only restriction it places on the
underlying random variable, U, is that it have finite variance.

We turn now to the joint-normal distribution, which is important both in
probability theory and in turbulent flows. For example, in experiments on
homogeneous turbulence the velocity components and a conserved passive
scalar {U1, U2, U3,φ} are found to be joint-normally distributed (see Fig. 5.46
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on page 175). The definition and properties of the joint-normal distribution
are now given for a general set of D random variables U = {U1, U2, . . . , UD}.
For D = 2 or 3, U can be thought of as components of velocity in a turbulent
flow.

It is convenient to use matrix notation. The mean and fluctuation of the
random vector U are denoted by

µ = ⟨U⟩, (3.113)

u = U − ⟨U⟩. (3.114)

The (symmetric D × D) covariance matrix is then

C = ⟨uuT⟩, (3.115)

If U = {U1, U2, U3} is the velocity, then the covariance matrix is a second-
order tensor with components Cij = ⟨uiuj⟩.

If U = {U1, U2, . . . , UD} is joint-normally distributed, then (by definition)
its joint PDF is

f(V ) = [(2π)D det(C)]−1/2 exp
[
− 1

2
(V − µ)TC−1(V − µ)

]
. (3.116)

Note that the V -dependence of the joint PDF is contained in the quadratic
form

g(V ) ≡ (V − µ)TC−1(V − µ). (3.117)

For D = 2, a constant value of g – corresponding to a constant probability
density – is an ellipse in the V1–V2 plane. For D = 3, a constant-probability-
surface is an ellipsoid in V -space.

We now examine the pair {U1, U2} of joint-normal random variables (i.e.,
D = 2) in more detail. Figure 3.18 shows a scatter plot and constant-
probability-density lines for a particular choice of µ and C.

In terms of the variances ⟨u2
1⟩ and ⟨u2

2⟩, and the correlation coefficient ρ12,
the joint normal PDF (Eq. (3.116)) is

f12(V1, V2) =
[
4π2⟨u2

1⟩⟨u2
2⟩(1 − ρ2

12)
]−1/2

exp

[
−1

2(1 − ρ2
12)

×
(

(V1 − ⟨U1⟩)2
⟨u2

1⟩
− 2ρ12(V1 − ⟨U1⟩)(V2 − ⟨U2⟩)

(⟨u2
1⟩⟨u2

2⟩)1/2
+

(V2 − ⟨U2⟩)2
⟨u2

2⟩

)]
.

(3.118)

From this equation, the following properties can be deduced.
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Fig. 3.18. A scatter plot and constant-probability density lines in the V1–V2 plane for
joint-normal random variables (U1, U2) with ⟨U1⟩ = 2, ⟨U2⟩ = 1, ⟨u2

1⟩ = 1, ⟨u2
2⟩ = 5

16
,

and ρ12 = 1/
√

5.

(i) The marginal PDFs of U1 and U2 (f1(V1) and f2(V2)) are Gaussian.

(ii) If U1 and U2 are uncorrelated (i.e., ρ12 = 0), then they are also in-
dependent (since then f12(V1, V2) = f1(V1)f2(V2)). This is a special
property of the joint-normal distribution: in general, lack of correla-
tion does not imply independence.

(iii) The conditional mean of U1 is

⟨U1|U2 = V2⟩ = ⟨U1⟩ +
⟨u1u2⟩
⟨u2

2⟩
(V2 − ⟨U2⟩). (3.119)

(iv) The conditional variance of U1 is

⟨(U1 − ⟨U1|V2⟩)2|V2⟩ = ⟨u2
1⟩(1 − ρ2

12). (3.120)

(v) The conditional PDF f1|2(V1|V2) is Gaussian.

Returning to the general case of U = {U1, U2, . . . , UD} being joint normal,
additional insight is gained by considering linear transformations of U . An
essential result (see Appendix I) is that, if U is joint normal, then a random
vector Û formed by a general linear transformation of U is also joint normal.

Because the covariance matrix C is symmetric, it can be diagonalized by
a unitary transformation, defined by a unitary matrix A. (The properties of
a unitary matrix are

ATA = AAT = I, (3.121)

where I is the D × D identity matrix.) That is, there is a unitary matrix A
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such that

ATCA = Λ, (3.122)

where Λ is the diagonal matrix containing the eigenvalues of C

Λ =

⎡

⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λD

⎤

⎥⎥⎥⎦
. (3.123)

Consequently the transformed random vector

û ≡ ATu (3.124)

has a diagonal covariance matrix Λ:

Ĉ = ⟨ûûT⟩ = ⟨ATuuTA⟩ = ATCA = Λ. (3.125)

There are several observations to be made and results to be deduced from
this transformation.

(i) If U is the velocity vector, then û is the fluctuating velocity in a
particular coordinate system – namely the principal axes of ⟨uiuj⟩.

(ii) The eigenvalues of C, λi, are

λi = ⟨û(i)û(i)⟩ ≥ 0, (3.126)

(where bracketed suffixes are excluded from the summation conven-
tion). Thus, since each eigenvalue is non-negative, C is symmetric
positive semi-definite.

(iii) That the covariance matrix Ĉ is diagonal indicates that the trans-
formed random variables {û1, û2, . . . , ûD} are uncorrelated.

These three observations apply irrespective of whether U is joint normal. In
addition we have the following

(iv) If U is joint normal, then {û1, û2, . . . , ûD} are independent Gaussian
random variables.

EXERCISES

3.22 From the definition of the ensemble average (Eq. (3.108)) show that

⟨⟨U⟩2
N⟩ = ⟨U⟩2 +

1

N
var(U), (3.127)
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and hence verify Eq. (3.110). Hint:

⟨U⟩2
N =

1

N2

N∑

n=1

N∑

m=1

U(n)U(m). (3.128)

3.23 Obtain an explicit expression for the kurtosis of ⟨U⟩N in terms of
N and the kurtosis of U. Comment on the result in light of the
central-limit theorem.

3.24 Show that, for large N, the ensemble mean (Eq. (3.108)) can be
written

⟨U⟩N = ⟨U⟩ + N−1/2u′ξ,

where u′ = sdev(U) and ξ is a standardized Gaussian random vari-
able.

3.25 Let U be a joint-normal random vector with mean µ and positive-
definite covariance matrix C = AΛAT, where A is unitary and Λ is
diagonal. Show that the random variable

û ≡ C−1/2(U − µ)

is a standardized joint normal, i.e., it has mean zero, identity covari-
ance, and joint PDF

f̂(V̂ ) =

(
1

2π

)D/2

exp
(

− 1
2

V̂
T
V̂

)
. (3.129)

3.26 A Gaussian random-number generator produces a sequence of in-
dependent standardized Gaussian random numbers: ξ(1), ξ(2), ξ(3), . . ..
How can these be used to generate a joint-normal random vector U
with specified mean µ and covariance matrix C?

(Hint: this can be achieved in a number of ways, the best of which
involves the Cholesky decomposition, i.e., a symmetric semi-definite
matrix can be decomposed as C = LLT, where L is lower triangular.)

3.6 Random processes
As an example of a random variable, we considered (in Section 3.2) a
component of velocity U in a repeatable turbulent-flow experiment, at a
particular location and time (relative to the initiation of the experiment). The
random variable U is completely characterized by its PDF, f(V ). Consider
now the same velocity, but as a function of time, i.e., U(t). Such a time-
dependent random variable is called a random process. Figure 3.19 illustrates
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Fig. 3.19. Sample paths of U(t) from three repetitions of a turbulent-flow experiment.

sample paths (i.e., values of U(t)) obtained in different repetitions of the
experiment.

How can a random process be characterized? At each point in time, the
random variable U(t) is characterized by its one-time CDF

F(V , t) ≡ P {U(t) < V }, (3.130)

or, equivalently, by the one-time PDF

f(V ; t) ≡ ∂F(V , t)

∂V
. (3.131)

However, these quantities contain no joint information about U(t) at two
or more times. To illustrate this limitation, Fig. 3.20 shows sample paths of
five different random processes, each with the same one-time PDF. Clearly,
radically different behavior (qualitatively and quantitatively) is possible, but
is not represented by the one-time PDF. The N-time joint CDF of the
process U(t) is defined by

FN(V1, t1;V2, t2; . . . ;VN, tN) ≡ P {U(t1) < V1, U(t2) < V2, . . . , U(tN) < VN},
(3.132)

where {t1, t2, . . . , tN} are specified time points, and fN(V1, t1;V2, t2; . . . ;VN, tN)
is the corresponding N-time joint PDF. To completely characterize the
random process, it is necessary to know this joint PDF for all instants of
time, which is, in general, an impossible task.

Considerable simplification occurs if the process is statistically stationary,
as are many (but certainly not all) turbulent flows. A process is statistically
stationary if all multi-time statistics are invariant under a shift in time, i.e.,
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Fig. 3.20. Sample paths of five statistically stationary random processes. The one-time
PDF of each is a standardized Gaussian. (a) A measured turbulent velocity. (b) A
measured turbulent velocity of a higher frequency than that of (a). (c) A Gaussian
process with the same spectrum as that of (a). (d) An Ornstein–Uhlenbeck process
(see Chapter 12) with the same integral timescale as that of (a). (e) A jump process
with the same spectrum as that of (d).

for all positive time intervals T , and all choices of {t1, t2, . . . , tN}, we have

f(V1, t1 + T ;V2, t2 + T ; . . . ;VN, tN + T ) = f(V1, t1;V2, t2, . . . , VN, tN).

(3.133)

After a laminar flow has been initiated, it can pass through an initial
transient period and then reach a steady state, in which the flow variables



68 3 The statistical description of turbulent flows

0 5 100.0

1.0

2.0

3.0

4.0

0.00

0.02

0.04

0.06

0.08

t

var(U)〈U  〉

Fig. 3.21. The mean ⟨U(t)⟩ (solid line) and variance ⟨u(t)2⟩ of the process shown in
Fig. 3.19.

are independent of time. A turbulent flow, after an initial transient period,
can reach a statistically stationary state in which, even though the flow
variables (e.g., U(t)) vary with time, the statistics are independent of time.
This is the case for the process shown in Fig. 3.19. The mean ⟨U(t)⟩ and
variance ⟨u(t)2⟩ of this process are shown in Fig. 3.21. Evidently, after t ≈ 5,
the statistics become independent of time, even though the process itself U(t)
continues to vary significantly.

For a statistically stationary process, the simplest multi-time statistic that
can be considered is the autocovariance

R(s) ≡ ⟨u(t)u(t + s)⟩, (3.134)

or, in normalized form, the autocorrelation function

ρ(s) ≡ ⟨u(t)u(t + s)⟩/⟨u(t)2⟩, (3.135)

where u(t) ≡ U(t)−⟨U⟩ is the fluctuation. (Note that, in view of the assumed
statistical stationarity, the mean ⟨U⟩, the variance ⟨u2⟩, R(s), and ρ(s) do not
depend upon t.) The autocorrelation function is the correlation coefficient
between the process at times t and t + s. Consequently it has the properties

ρ(0) = 1, (3.136)

|ρ(s)| ≤ 1. (3.137)

Further, putting t′ = t + s, we obtain

ρ(s) = ⟨u(t′ − s)u(t′)⟩/⟨u2⟩
= ρ(−s), (3.138)

i.e., ρ(s) is an even function.
If U(t) is periodic with period T (i.e., U(t + T ) = U(t)), then so also is
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ρ(s) (i.e., ρ(s + T ) = ρ(s)). However, for processes arising in turbulent flows,
we expect the correlation to diminish as the lag time s increases. Usually ρ(s)
decreases sufficiently rapidly that the integral

τ̄ ≡
∫ ∞

0

ρ(s) ds (3.139)

converges: then τ̄ is the integral timescale of the process.

Figure 3.22 shows the autocorrelation functions for the five processes
given in Fig. 3.20. Notice in particular that the high-frequency process
(b) has a narrower autocorrelation function (and hence a smaller τ̄) than
does the low-frequency process (a). By construction, process (c) has the
same autocorrelation as that of (a). Processes (d) and (e) both have the
autocorrelation function ρ(s) = exp(−|s|/τ̄), with the same integral timescale
as that of process (a). Hence, apart from (b), all the processes have the same
integral timescale.

The autocovariance R(s) ≡ ⟨u(t)u(t + s)⟩ = ⟨u(t)2⟩ρ(s) and (twice) the
frequency spectrum E(ω) form a Fourier-transform pair:

E(ω) ≡ 1

π

∫ ∞

−∞
R(s)e−iωs ds

=
2

π

∫ ∞

0

R(s) cos(ωs) ds, (3.140)

and

R(s) =
1

2

∫ ∞

−∞
E(ω)eiωs dω

=

∫ ∞

0

E(ω) cos(ωs) dω. (3.141)

(The definitions and properties of Fourier transforms are given in Appendix
D.) Clearly R(s) and E(ω) contain the same information, just in different
forms. Because R(s) is real and even, so also is E(ω).

As discussed more fully in Appendix E, the velocity fluctuation u(t) has
a spectral representation as the weighted sum of Fourier modes of different
frequencies ω, i.e., eiωt = cos (ωt) + i sin (ωt). The fundamental property of
the frequency spectrum is that (for ωa < ωb) the integral

∫ ωb

ωa

E(ω) dω (3.142)

is the contribution to the variance ⟨u(t)2⟩ of all modes in the frequency range
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Fig. 3.22. Autocorrelation functions of the processes shown in Fig. 3.20. As the inset
shows, for processes (a) and (c) the autocorrelation function is smooth at the origin.
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ωa ≤ ω < ωb. In particular the variance is

R(0) = ⟨u(t)2⟩ =

∫ ∞

0

E(ω) dω, (3.143)

as is evident from Eq. (3.141) with s = 0.
A further simple connection between the spectrum and the autocorrelation

is that the integral timescale is given by

τ̄ =
πE(0)

2⟨u2⟩ , (3.144)

as is readily verified by setting ω = 0 in Eq. (3.140). A more complete
explanation of the spectral representation and interpretation of the frequency
spectrum is given in Appendix E.

Figure 3.23 shows the spectra of the stationary random processes given in
Fig. 3.20. The high-frequency process (b), having a smaller integral timescale
than that of process (a), has a correspondingly smaller value of the spectrum
at the origin (Eq. 3.144) – but its spectrum extends to higher frequencies.

In practice, the autocorrelation function or the spectrum is usually the
only quantity used to characterize the multi-time properties of a random
process. However, it should be appreciated that the one-time PDF and
the autocorrelation function provide only a partial characterization of the
process. This point is amply demonstrated by processes (d) and (e) in
Fig. 3.20. The two processes are qualitatively quite different and yet they
have the same one-time PDF (Gaussian) and the same autocorrelation
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function (ρ(s) = e−|s|/τ̄). To repeat, in general, the one-time PDF and the
autocorrelation function do not completely characterize a random process.

A Gaussian process is an important but very special case. If a process is
Gaussian then, by definition, the general N-time PDF (Eq. (3.133)) is joint
normal. Now the joint-normal distribution is fully characterized by its means
⟨U(tn)⟩, and its covariances ⟨u(tn)u(tm)⟩. For a statistically stationary process,
we have

⟨u(tn)u(tm)⟩ = R(tn − tm) = ⟨u(t)2⟩ ρ(tn − tm). (3.145)

Hence a statistically stationary Gaussian process is completely characterized
by its mean ⟨U(t)⟩, its variance ⟨u(t)2⟩, and the autocorrelation function ρ(s)
(or equivalently the spectrum E(ω)).

In Fig. 3.20, process (c) is defined to be the Gaussian process with the
same spectrum as that of the turbulent velocity, process (a). Some differences
between processes (a) and (c) may be discernible; and these differences
can be clearly revealed by, for example, examining the sample paths of
Ü(t) ≡ d2U(t)/dt2, see Fig. 3.24. For the Gaussian process (c) it follows that
Ü(t) is also Gaussian and so the kurtosis of Ü(t) is 3. However, for the
turbulent velocity, process (a), Ü(t) is far from Gaussian, and has a kurtosis
of 11.

Random processes arising from turbulence (e.g., process (a)) are differen-
tiable, i.e., for each sample path the following limit exists:

dU(t)

dt
= lim

∆t↓0

(
U(t + ∆t) − U(t)

∆t

)
. (3.146)

In this case, taking the mean and taking the limit commute, so that
〈

dU(t)

dt

〉
=

〈
lim
∆t↓0

(
U(t + ∆t) − U(t)

∆t

)〉

= lim
∆t↓0

(
⟨U(t + ∆t)⟩ − ⟨U(t)⟩

∆t

)

=
d⟨U(t)⟩

dt
. (3.147)

Synthetic processes (such as processes (d) and (e)) need not be differentiable
(i.e., the limit Eq. (3.146) does not exist). It may be observed that the
spectra of these processes decay as E(ω) ∼ ω−2 at high frequencies, and
that (correspondingly) their autocorrelation function ρ(s) = e−|s|/τ̄ is not
differentiable at the origin.
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Fig. 3.24. Sample paths of Ü(t) for processes (a) and (c) shown in Fig. 3.20.

Process (d) is an Ornstein–Uhlenbeck process, which is the canonical exam-
ple of a diffusion process. Such processes are used in PDF methods and are
described in Chapter 12 and Appendix J.

EXERCISES

In the following exercises, u(t) is a zero-mean, statistically stationary, differ-
entiable random process with autocovariance R(s), autocorrelation function
ρ(s), and spectrum E(ω).

3.27 Show that u(t) and u̇(t) are uncorrelated, and that u(t) and ü(t) are
negatively correlated.

3.28 Show that
〈
u2 d3u

dt3

〉
= −2⟨uu̇ü⟩ = 2⟨(u̇)3⟩ + 2⟨uu̇ü⟩ = ⟨(u̇)3⟩. (3.148)

3.29 Show that at the origin (s = 0) dR(s)/ ds is zero, and d2R(s)/ ds2 is
negative.
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3.30 Show that the autocovariance B(s) of the process u̇(t) is

B(s) = −d2R(s)

ds2
. (3.149)

3.31 Show that the integral timescale of u̇(t) is zero.

3.32 Show that the spectrum of u̇(t) is ω2E(ω).

3.33 If u(t) is a Gaussian process, show that

⟨u̇(t)|u(t) = v⟩ = 0, (3.150)

⟨ü(t)|u(t) = v⟩ = −v⟨u̇(t)2⟩/⟨u2⟩. (3.151)

3.7 Random fields
In a turbulent flow, the velocity U (x, t) is a time-dependent random vector
field. It can be described – i.e., partially characterized – by extensions of the
tools presented in the previous sections.

One-point statistics

The one-point, one-time joint CDF of velocity is

F(V , x, t) = P {Ui(x, t) < Vi, i = 1, 2, 3}, (3.152)

and then the joint PDF is

f(V ; x, t) =
∂3F(V , x, t)

∂V1 ∂V2 ∂V3

. (3.153)

At each point and time this PDF fully characterizes the random velocity
vector, but it contains no joint information at two or more times or positions.
In terms of this PDF, the mean velocity field is

⟨U (x, t)⟩ =

∫ ∞∫

−∞

∫
V f(V ; x, t) dV1 dV2 dV3 (3.154)

=

∫
V f(V ; x, t) dV . (3.155)

The second line of this equation introduces an abbreviated notation:
∫
( ) dV

is written for
∫ ∞∫

−∞

∫
( ) dV1 dV2 dV3.
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The fluctuating velocity field is defined by

u(x, t) ≡ U (x, t) − ⟨U (x, t)⟩. (3.156)

The (one-point, one-time) covariance of the velocity is ⟨ui(x, t)uj(x, t)⟩. For
reasons given in the next chapter, these covariances are called Reynolds
stresses, and are written ⟨uiuj⟩, with the dependences on x and t being
understood.

A word on notation: the semi-colon in f(V ; x, t) indicates that f is a
density with respect to the sample-space variables that appear to the left
of the semi-colon (i.e., V1, V2, and V3), whereas f is a function with respect
to the remaining variables (i.e., x1, x2, x3, and t). This distinction is useful
because densities and functions have different transformation properties (see
Exercise 3.9 on page 49).

Turbulent velocity fields are differentiable, and (as discussed in Section 3.6)
differentiation and taking the mean commute:

〈
∂Ui

∂t

〉
=
∂⟨Ui⟩
∂t

, (3.157)

〈
∂Ui

∂xj

〉
=
∂⟨Ui⟩
∂xj

. (3.158)

N-point statistics

The N-point, N-time joint PDF can be defined as a simple extension of
Eq. (3.132). Let {(x(n), t(n)), n = 1, 2, . . . , N} be a specified set of positions and
times. Then we define

fN(V (1), x(1), t(1),V (2), x(2), t(2); . . . ; V (N), x(N), t(N)) (3.159)

to be the joint PDF of U (x, t) at these N space–time points. To determine
this N-point PDF for all space–time points is obviously impossible, and
hence in practice a random velocity field cannot be fully characterized.

Turbulent velocity fields are found not to be Gaussian: a Gaussian
field is fully characterized by the mean ⟨U (x, t)⟩ and the autocovariance
⟨ui(x(1), t(1))uj(x(2), t(2))⟩.

Statistical stationarity and homogeneity

The random field U (x, t) is statistically stationary if all statistics are invariant
under a shift in time. In terms of the N-point PDF, this means that fN is
unchanged if (x(n), t(n)) is replaced by (x(n), t(n) +T ) for all N points, where T

is the time shift.
Similarly, the field is statistically homogeneous if all statistics are invariants
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Fig. 3.25. A sketch of a turbulent-channel-flow apparatus.

under a shift in position. Then fN is unchanged if (x(n), t(n)) is replaced by
(x(n) + X , t(n)), for all N points, where X is the shift in position. If the
velocity field U (x, t) is statistically homogeneous, it follows that the mean
velocity ⟨U⟩ is uniform; and, with an appropriate choice of frame, ⟨U⟩
can be taken to be zero. The definition of homogeneous turbulence is less
restrictive: specifically, in homogeneous turbulence the fluctuating velocity
field u(x, t) is statistically homogeneous. It is consistent with this definition
for the mean velocity gradients ∂⟨Ui⟩/∂xj to be non-zero, but uniform (see
Section 5.4.5). A good approximation to homogeneous turbulence can be
achieved in wind-tunnel experiments; and homogeneous turbulence is the
simplest class of flows to study using direct numerical simulation.

In a similar way, turbulent flows can be statistically two-dimensional
or one-dimensional. For example, Fig. 3.25 is a sketch of a channel flow
apparatus. For a large aspect ratio (b/h ≫ 1), and remote from the end walls
(|x3|/b ≪ 1), the statistics of the flow vary little in the spanwise (x3) direction.
To within an approximation, then, the velocity field U (x, t) is statistically
two-dimensional – statistics being independent of x3. Sufficiently far down
the channel (x1/h ≫ 1) the flow becomes (statistically) fully developed.
Then the velocity field is statistically one-dimensional, with statistics being
independent both of x1 and of x3. Similarly, the turbulent flow in a pipe is
statistically axisymmetric in that (in polar-cylindrical coordinates) all statistics
are independent of the circumferential coordinate.

It should be emphasized that, even if a flow is statistically homogeneous
or one-dimensional, nevertheless all three components of U (x, t) vary in
all three coordinate directions and time. It is only the statistics that are
independent of some coordinate directions.

Isotropic turbulence

A statistically homogeneous field U (x, t) is, by definition, statistically invari-
ant under translations (i.e., shifts in the origin of the coordinate system). If
the field is also statistically invariant under rotations and reflections of the
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coordinate system, then it is (statistically) isotropic. The concept of isotropy
is extremely important in turbulence: hundreds of wind-tunnel experiments
have been performed on (approximately) isotropic turbulence, and much of
turbulence theory centers on it. In terms of the N-point PDF (Eq. (3.159)), in
isotropic turbulence fN is unchanged if U (x(n), t(n)) is replaced by U (x(n), t(n)),
where x and U denote the position and velocity in any coordinate system
obtained by rotation and reflections of the coordinate axes.

Two-point correlation

The simplest statistic containing some information on the spatial structure
of the random field is the two-point, one-time autocovariance

Rij(r, x, t) ≡ ⟨ui(x, t)uj(x + r, t)⟩, (3.160)

which is often referred to as the two-point correlation. From this it is possible
to define various integral lengthscales, for example

L11(x, t) ≡ 1

R11(0, x, t)

∫ ∞

0

R11(e1r, x, t) dr, (3.161)

where e1 is the unit vector in the x1-coordinate direction.

Wavenumber spectra

For homogeneous turbulence the two-point correlation Rij(r, t) is indepen-
dent of x, and the information it contains can be re-expressed in terms of
the wavenumber spectrum. The spatial Fourier mode

eiκ·x = cos(κ · x) + i sin(κ · x), (3.162)

is a function that varies sinusoidally (with wavelength ℓ = 2π/|κ|) in the
direction of the wavenumber vector κ, and that is constant in planes normal
to κ. The velocity spectrum tensor Φij(κ, t) is the Fourier transform of the
two-point correlation

Φij(κ, t) =
1

(2π)3

∫ ∞∫

−∞

∫
e−iκ·rRij(r, t) dr, (3.163)

and the inverse transform is

Rij(r, t) =

∫ ∞∫

−∞

∫
eiκ·rΦij(κ, t) dκ, (3.164)
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where dr and dκ are written for dr1 dr2 dr3 and dκ1 dκ2 dκ3, respectively.
Setting r = 0 in this equation yields

Rij(0, t) = ⟨uiuj⟩ =

∫ ∞∫

−∞

∫
Φij(κ, t) dκ. (3.165)

and so Φij(κ, t) represents the contribution to the covariance ⟨uiuj⟩ of velocity
modes with wavenumber κ.

The two-point correlation and the spectrum contain two different kinds of
directional information. The dependences of Rij(r, t) on r, and of Φij(κ, t) on
κ, give information about the directional dependence of correlation; while
the components of Rij and Φij give information about the directions of the
velocities.

A useful quantity, especially for qualitative discussions, is the energy spec-
trum function:

E(κ, t) ≡
∫ ∞∫

−∞

∫
1
2
Φii(κ, t)δ(|κ| − κ) dκ, (3.166)

which may be viewed as Φij(κ, t) stripped of all directional information.
Integration of Eq. (3.166) over all scalar wavenumbers, κ, yields

∫ ∞

0

E(κ, t) dκ = 1
2
Rii(0, t) = 1

2
⟨uiui⟩. (3.167)

Thus, E(κ, t) dκ represents the contribution to the turbulent kinetic energy
1
2
⟨uiui⟩ from all modes with |κ| in the range κ ≤ |κ| < κ + dκ. Velocity

spectra in turbulence are examined in some detail in Section 6.5.

EXERCISES

3.34 From the substitution x′ = x + r and the definition of the two-point
correlation (Eq. (3.160)), show that

Rij(r, x, t) = Rji(−r, x′, t), (3.168)

and hence, for a statistically homogeneous field,

Rij(r, t) = Rji(−r, t). (3.169)

3.35 If u(x, t) is divergence-free (i.e., ∇ · u = 0), show that the two-point
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correlation (Eq. (3.160)) satisfies

∂

∂rj
Rij(x, r, t) = 0. (3.170)

Show that, if, in addition, u(x, t) is statistically homogeneous, then

∂

∂rj
Rij(r, t) =

∂

∂ri
Rij(r, t) = 0. (3.171)

3.8 Probability and averaging
Having developed the tools to describe random variables, random processes,
and random fields, we now return to the starting point in order to clarify
the notion of probability, on which everything has been built. Physical
quantities such as density and velocity are defined operationally (e.g., in
Section 2.1), so that (at least in principle) their values can be determined by
measurement. Operational definitions of probability – for example, in terms
of time averages or ensemble averages – although they are often used, are
unsatisfactory. Instead, in modern treatments, probability theory is axiomatic.
The purpose of this section is to describe this axiomatic approach, and to
explain the connection to measurable quantities (such as time averages). For
the sake of simplicity, we start the discussion in the context of a coin-tossing
experiment.

Consider a coin that can be tossed any number of times, with the two
possible outcomes ‘heads’ and ‘tails.’ We define the variable p to be the
probability of ‘heads.’ (It is assumed that each toss is statistically independent
and indistinguishable from every other toss.)

Suppose that an experiment in which the coin is tossed N = 1,000,000
times is patiently performed. The fraction of tosses resulting in heads is a
random variable denoted by pN . In this particular experiment, suppose that
the measured value of pN is 0.5024.

The coin-tossing experiment is an example of Bernoulli trials, for which
there is a complete theory. For example, suppose that we hypothesize that
the coin is ‘fair,’ i.e., p = 1

2
. Then a simple statistical calculation shows that

(for N = 1,000,000) with 99% probability pN lies in the range

0.4987 < pN < 0.5013.

Since the measured value pN = 0.5024 lies outside this range, we can have
high confidence that the hypothesis p = 1

2
is false. Instead, a further statistical
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calculation, based on the observed value of pN , shows that, with 99%
confidence, p lies in the range

0.5011 < p < 0.5037.

To summarize:

(i) p is defined to be the probability of ‘heads,’
(ii) pN is the measured frequency of ‘heads,’
(iii) given a hypothesis about p, a range for pN can be predicted, and
(iv) given the measured value of pN , a confidence interval for p can be

determined.

The two most important points to appreciate are that p cannot be measured
– it can only be estimated with some confidence level; and that, although pN
tends to p as N tends to infinity, this is not taken as the definition of p.

In considering the velocity U(t) as a turbulent flow, we define f(V ; t) to
be its PDF, and then define the mean by

⟨U(t)⟩ ≡
∫ ∞

−∞
Vf(V ; t) dV . (3.172)

In turbulent-flow experiments and simulations, several kinds of averaging
are used to define other means that can be related to ⟨U(t)⟩. For statistically
stationary flows the time average (over a time interval T ) is defined by

⟨U(t)⟩T ≡ 1

T

∫ t+T

t

U(t′) dt′. (3.173)

For flows that can be repeated or replicated N times, the ensemble average
is defined by

⟨U(t)⟩N ≡ 1

N

N∑

n=1

U(n)(t), (3.174)

where U(n)(t) is the measurement on the nth realization. In simulations of
homogeneous turbulence in a cubic domain of side L, the spatial average of
U(x, t) is defined by

⟨U(t)⟩L ≡ 1

L3

∫ L

0

∫ L

0

∫ L

0

U(x, t) dx1 dx2 dx3. (3.175)

Similar spatial averages can be defined for statistically one- and two-
dimensional flows.

These averages ⟨U⟩T , ⟨U⟩N , and ⟨U⟩L are (like pN) random variables. They
can be used to estimate ⟨U⟩, but not to measure it with certainty. Most im-
portantly, ⟨U⟩ is well defined for all flows, even those that are not stationary
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Fig. 3.26. Velocity profiles measured by Durst et al. (1974) in the steady laminar
flow downstream of a symmetric expansion in a rectangular duct. The geometry and
boundary conditions are symmetric about the plane y = 0. Symbols: ⃝, stable state
1; △, stable state 2; •, reflection of profile 1 about the y axis.

or homogeneous, or that cannot be repeated or replicated. For statistically
stationary flows (barring exceptional circumstances) ⟨U⟩T tends to ⟨U⟩ as T
tends to infinity, but this is not taken as the definition of the mean.

EXERCISES

3.36 In a turbulent-flow experiment the ensemble mean ⟨U⟩N obtained
from N = 1,000 measurements is 11.24 m s−1, and the standard
deviation of U is estimated to be 2.5 m s−1. Determine the 95%
confidence interval for ⟨U⟩.

3.37 For a statistically stationary flow show that

var(⟨U(t)⟩T ) =
var(U)

T 2

∫ T

0

∫ T

0

ρ(t − s) ds dt,

where ρ(s) is the autocorrelation function of U(t). Assuming that the
integral timescale τ̄ exists and is positive (Eq. (3.139)), obtain the
long-time result

var(⟨U(t)⟩T ) ∼ 2τ̄

T
var(U). (3.176)

3.38 Figure 3.26 shows velocity profiles measured in the steady laminar
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flow downstream of a symmetric expansion in a rectangular duct. Al-
though the geometry and boundary conditions are symmetric about
the plane y = 0, the flow is not symmetric. Each time the flow is
started from rest, after an initial transient, the flow reaches one of two
stable steady states. For this flow, discuss the relationship among the
expectation ⟨U⟩, the time average ⟨U⟩T , and the ensemble average
⟨U⟩N .


