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Mixed Models

e Both the similarity and nonlinear models exhibit a high level
of correlation in a priori tests with measured values of TA but
they underestimate the average dissipation and are
numerically unstable

e Typically they are combined with an eddy-viscosity model to
provide the proper level of dissipation.



Mixed Models

e An example is (Bardina et al. 1980)

riy = O, (Wt — W ;) — 2(CsA)?1515

e The similarity term has a high level of correlation with Ti? and
the eddy-viscosity term provides the appropriate level of
dissipation.
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Mixed Models

e Proper justification for the mixed model did not exist at first
but a more unified theory has developed in the form of
approximate deconvolution or filter reconstruction modeling
(Guerts pg 200, Sagaut pg 210)

e |dea: a SGS model should be built from 2 parts



Mixed Models

gaussian filter

e The first part accounts for the
effect of the filter through an
approximate reconstruction of
the filter's effect on the velocity 2
field (note the similarity model
is a zero-order filter
reconstruction).

e This is the model for the 10° a2 l
resolved SFS. " —

|
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Mixed Models

e The second part accounts for
the SGS component of 7;;

e We then assume that we can
build 7;; as a linear combination
of these two model components.

gaussian filter

;)q‘/z

k212
k_(k1+k2+k3
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Mixed Models

A few last notes on Similarity models
e Bardina's model is exactly zero for a spectral cutoff filter
e Liu et al. form of the similarity model also fails. This is
credited to the nonlocal structure of the cutoff filter. It breaks
the central assumption of the similarity model — that the
locally 7;; decomposed at different levels is self similar



Modulated Gradient Model

e A related model of similar form to the nonlinear model is the
Modulated Gradient Model (see Lu et al. 2008 and Lu and
Porté-Agel 2010)

e The goal is to improve the magnitude of the 7;; estimates
while keeping the high level of correlation observed for
nonlinear (gradient) models



Modulated Gradient Model

e Assume
Tij = krCij
where for consistency Cyr = 2

o Using our resolved stress L;; = @;u; — u; u; and the Germano
identity (more later), we can show that approximately

Oij = Q(L’Lj/ka) = Tij = QET(LU/ka)
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Modulated Gradient Model

e This model suffers from some drawbacks, such as insufficient
dissipation at high Re and that it is not material frame
indifferent

e The authors suggested an improvement by replacing L;; with
Ak I
Tij = 2k (Aij Ar)

Note: we can also use
G _ AOu O, | NS0T 06, | A2 0 05
Y12 0z Oz 12 0y Oy 12 0z 0z
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Dynamic SGS Models

e So far we have given a general description of some commonly
used SGS models

e All of these models include at least one model
coefficient that must be prescribed, either based on theory
with a specific set of assumptions (usually isotropy), from
experimental data, or chosen ad hoc to get the “correct” a
posteriori results from simulations

e Germano et al. (1991) developed a procedure to dynamically
calculate these unknown model coefficients

e For scalars and compressible flow see Moin et al., PofF, (1991)
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Dynamic SGS Models

e Recall: applying a low-pass filter to the N-S equations with a
filter of characteristic width A (denoted by ™) results in the

unknown SFS stress term:

Tijg = uin — uiuj

(1)

e This term must be modeled with an SGS model to close our

equation set
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Dynamic SGS Models

e We can apply another filter (referred to as a test filter) to the
filtered N-S equations at a larger scale (say 2A) denoted by a
bar (-):

8171 817@71'3 _ 85 1 8261 67’@'

ot " Oz, 0w, Reda? Oz

e Our LES filter properties (commutation with differentiation)
allows us to rewrite in standard filtered form

8’[77 8%% _ 85 1 8251 3?7;1'

ot " Oz, 0w, Reda? Oa;
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Dynamic SGS Models

e The convective term can be reformatted into our standard
format using the same method we used for the original filtered
LES equations (see Lecture 6)

it = — (uiuj — U Uy + U4 Uj)
8.%']' al'j
_om, o (Wit — i ;)
N 8$]’ a$]’
S~—— -~

e Term | is our standard form and we can move Term Il to the
RHS of our expression

0
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Dynamic SGS Models

e Rearranging yields

ou  Ouiu; _ 9p 1%
O0Tij 8(?17]—?7@773) + F
arj axj Z

Note: @z%*f%
ou, , duiu; _ 9p 19w
_ — .4 — .4 = =
a(uz‘ug‘—%_%Jr“i ”j>

F.
g
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Dynamic SGS Models

e We can now write the SFS stress at the 2A level as:

Tij = it — ; u; (2)

which leads to
on |, UmT, __0F | 10T 0T,
ot Ox; ~ 9z; Re 83;]2 Ox;j

+ E;

e \We can also consider the stress at the smallest resolved scales
(the Leonard stress we discussed in Lecture 13)

Lij = Uity — U; U; (3)




Dynamic SGS Models

e We can algebraically combine Equations (1), (2), (3) as
Lij = Tij — Tij (4)
e Graphically, this looks like

log(E(k))
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Dynamic SGS Models

e Equation (4) is an identity — it is exact! It can be exploited
to derive model coefficients for common SGS models

e This identity is usually referred to as the Germano identity

e We will use the Smagorinsky model as an example of how one
can use the Germano identity to find model coefficients.

e Procedurally, we can follow the same steps (presented next)
for any base SGS model
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Dynamic Smagorinsky Model

e The first assumption we must make is that the same model
(e.g. Smagorinsky model) can be applied for the stress at A
and aA (say, 2A)

e Using the Smagorinsky model in the Germano identity (Note
Smagorinsky is only for anisotropic part)

1
Lij — g%’ka =Ty —Tij

Uiy — u; u; = —2(Csal)? ‘E‘ §ij +2(CsA)? ‘g‘ §ij
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Dynamic Smagorinsky Model

e For the next parts we will follow Lilly (1992)

e We can rearrange this equation to write an expression for the
error associated with using the Smagorinsky model in the
Germano identity

1

¢ij = Lij—3

513 Lik— [—2(CSaA)2 5] 855+ 2(Cs0)2 3] 53}
e This can be rewritten as (note: we assume L;; is trace free)
eij = Lij — C3Mi;
where
My, — 242 Us\g_ o \5\@,}
e Problem: This is 9 equations with only 1 unknown!
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Dynamic Smagorinsky Model

e Lilly (1992) proposed to minimize the error in a least-squares
sense. That is, we want the least-square error of using the
Smagorinsky model in the Germano identity

e The squared error is

)

e We want the minimum w.r.t. C’g (ie., 66%/80% =0)

2
8eij

aC2

Solving for C% yields

ef = (Lij — C3Mij)* = Lij — 2C5Li; Mij + (CF)* My My,

= —2L;;M;; + 203 M;; M, = 0
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Dynamic Smagorinsky Model

e Problem: the above local form of the dynamic Smagorinsky
coefficient is numerically unstable

e Remember that the instantaneously energy cascade can be
forward or backwards

e In simulations, this was found to lead to numerical instability
(having £C%)

e The instability is attributed to high time correlations of C’g
(i.e., when C’L% is negative at a point it tends to stay negative)

e Why do we have this problem? We had to make 2
assumptions to derive the Cg equation!

0
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Assumptions in the Dynamic Model

15t Assumption

o C% is constant over the filter width aA (- filter in the
equations)

e Recall our basic definition of a convolution filter

0= [ oli-Cncia
If we look at the error equations, we notice that C% falls
under the bar filter

1 —_—| = ~| ~
€ij = Lz‘j_*(;iijk— |:—2(C,5'04A)2 ‘S‘ Sij + Q(CSA)Q ’S) SZJ:|

3

e This is actually a set of integral equations if we don't make

our assumption! @
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Assumptions in the Dynamic Model

15t Assumption, continued
e Ghosal et al. (1995) solved this equation for C% everywhere
using a variational method — which is very expensive and
complex
e The constant C% (w.r.t. the test filter) assumption
contributes to the previously discussed numerical instability

e The typical method (instead of the Ghosal method) is to
enforce the Germano identity in an average sense
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Assumptions in the Dynamic Model

15t Assumption, continued

o Constraining C% removes its oscillations — resulting in stable
simulations

e Typically, the average is enforced over some region of spatial
homogeneity

e For example in a homogeneous boundary layer over horizontal
planes

e () is an averaging operator, e.g., C’% varies only in the wall
normal direction
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Assumptions in the Dynamic Model

15t Assumption, continued

e Meneveau et al. (1996) developed the Lagrangian Dynamic
model based on the idea that the Germano identity should be
enforced along fluid particle trajectories

e Using 1%t-order time and space estimates, the average of any
quantity A (e.g., L;j) can be defined as

(A@)" =y [A@]"™ + (1 - 7) [A@ - @A)

where v = (At/T™)/(1 4+ At/T") and T is the Lagrangian
timescale that controls how far back in time the average goes
T |

N

AN
Aty AEO0
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Assumptions in the Dynamic Model

2"d Assumption

e When we applied the Smagorinsky model to the Germano
identity at 2 different scales, we made the assumption that
the same C’g applies at both scales

o i.e., we assumed C2(A) = C%(2A), or in other words scale
invariance of C%

e This assumption is not bad provided that both of our filter
scales A and 2A are in the inertial subrange of turbulence

e We will violate this assumption in some region of the flow
(e.g., near the wall in a boundary layer when z < 2A) for
cases with at least 1 direction of flow anisotropy
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Assumptions in the Dynamic Model

2"d Assumption, continued

e Porté-Agel et al., (2000) developed a generalized dynamic
model where C% is a function of scale

e They made the weaker assumption that C’g follows a power
law distribution at the smallest resolved scales, e.g.
C%(24) B C%(4A)
C3(A N CZ(2A
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Assumptions in the Dynamic Model

2"d Assumption, continued

e So now in our equation for Cg, we have
My, = 227 Ug\ Sy - o203 5}
where )
Cs5(24)
C3(A)

is the scale-dependence coefficient

8=
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