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Mixed Models

• Both the similarity and nonlinear models exhibit a high level
of correlation in a priori tests with measured values of τ∆

ij , but
they underestimate the average dissipation and are
numerically unstable

• Typically they are combined with an eddy-viscosity model to
provide the proper level of dissipation.
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Mixed Models

• An example is (Bardina et al. 1980)

τij = CL

(
ũiũj − ũi ũj

)
− 2(CS∆)2|S̃|S̃ij

• The similarity term has a high level of correlation with τ∆
ij and

the eddy-viscosity term provides the appropriate level of
dissipation.
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Mixed Models

• Proper justification for the mixed model did not exist at first
but a more unified theory has developed in the form of
approximate deconvolution or filter reconstruction modeling
(Guerts pg 200, Sagaut pg 210)

• Idea: a SGS model should be built from 2 parts
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Mixed Models

• The first part accounts for the
effect of the filter through an
approximate reconstruction of
the filter’s effect on the velocity
field (note the similarity model
is a zero-order filter
reconstruction).

• This is the model for the
resolved SFS.
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Mixed Models

• The second part accounts for
the SGS component of τij

• We then assume that we can
build τij as a linear combination
of these two model components.
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Mixed Models

A few last notes on Similarity models

• Bardina’s model is exactly zero for a spectral cutoff filter

• Liu et al. form of the similarity model also fails. This is
credited to the nonlocal structure of the cutoff filter. It breaks
the central assumption of the similarity model – that the
locally τij decomposed at different levels is self similar
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Modulated Gradient Model

• A related model of similar form to the nonlinear model is the
Modulated Gradient Model (see Lu et al. 2008 and Lu and
Porté-Agel 2010)

• The goal is to improve the magnitude of the τij estimates
while keeping the high level of correlation observed for
nonlinear (gradient) models
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Modulated Gradient Model

• Assume
τij = k̃rCij

where for consistency Ckk = 2

• Using our resolved stress Lij = ũiũj − ũi ũj and the Germano
identity (more later), we can show that approximately

Cij = 2(Lij/Lkk)⇒ τij = 2k̃r(Lij/Lkk)
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Modulated Gradient Model

• This model suffers from some drawbacks, such as insufficient
dissipation at high Re and that it is not material frame
indifferent

• The authors suggested an improvement by replacing Lij with

Ãik

τij = 2k̃r(ÃijÃkk)

Note: we can also use

G̃ij =
∆2
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Dynamic SGS Models

• So far we have given a general description of some commonly
used SGS models

• All of these models include at least one model
coefficient that must be prescribed, either based on theory
with a specific set of assumptions (usually isotropy), from
experimental data, or chosen ad hoc to get the “correct” a
posteriori results from simulations

• Germano et al. (1991) developed a procedure to dynamically
calculate these unknown model coefficients

• For scalars and compressible flow see Moin et al., PofF, (1991)
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Dynamic SGS Models

• Recall: applying a low-pass filter to the N-S equations with a
filter of characteristic width ∆ (denoted by ˜) results in the
unknown SFS stress term:

τij = ũiuj − ũiũj (1)

• This term must be modeled with an SGS model to close our
equation set
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Dynamic SGS Models

• We can apply another filter (referred to as a test filter) to the
filtered N-S equations at a larger scale (say 2∆) denoted by a
bar (-):
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• Our LES filter properties (commutation with differentiation)
allows us to rewrite in standard filtered form

∂ũi
∂t

+
∂ũiũj
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Dynamic SGS Models

• The convective term can be reformatted into our standard
format using the same method we used for the original filtered
LES equations (see Lecture 6)

∂ũiũj
∂xj

=
∂

∂xj

(
ũiũj − ũi ũj + ũi ũj

)
=
∂ũi ũj
∂xj︸ ︷︷ ︸
I

+
∂
(
ũiũj − ũi ũj

)
∂xj︸ ︷︷ ︸
II

• Term I is our standard form and we can move Term II to the
RHS of our expression

15 / 30



Dynamic SGS Models

• Rearranging yields
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Note: τij = ũiuj − ũiũj
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Dynamic SGS Models

• We can now write the SFS stress at the 2∆ level as:

Tij = ũiuj − ũi ũj (2)

which leads to

∂ũi
∂t

+
∂ũi ũj
∂xj

= − ∂p̃

∂xi
+

1

Re

∂2ũi
∂x2

j
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• We can also consider the stress at the smallest resolved scales
(the Leonard stress we discussed in Lecture 13)

Lij = ũiũj − ũi ũj (3)
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Dynamic SGS Models

• We can algebraically combine Equations (1), (2), (3) as

Lij = Tij − τij (4)

ũiũj − ũi ũj = ũiuj − ũi ũj − ũiuj + ũiũj

• Graphically, this looks like
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Dynamic SGS Models

• Equation (4) is an identity – it is exact! It can be exploited
to derive model coefficients for common SGS models

• This identity is usually referred to as the Germano identity

• We will use the Smagorinsky model as an example of how one
can use the Germano identity to find model coefficients.

• Procedurally, we can follow the same steps (presented next)
for any base SGS model
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Dynamic Smagorinsky Model

• The first assumption we must make is that the same model
(e.g. Smagorinsky model) can be applied for the stress at ∆
and α∆ (say, 2∆)

• Using the Smagorinsky model in the Germano identity (Note
Smagorinsky is only for anisotropic part)

Lij −
1

3
δijLkk = Tij − τij

ũiũj − ũi ũj = −2(CSα∆)2
∣∣∣S̃∣∣∣ S̃ij + 2(CS∆)2

∣∣∣S̃∣∣∣ S̃ij
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Dynamic Smagorinsky Model

• For the next parts we will follow Lilly (1992)

• We can rearrange this equation to write an expression for the
error associated with using the Smagorinsky model in the
Germano identity

eij = Lij−
1

3
δijLkk−

[
−2(CSα∆)2

∣∣∣S̃∣∣∣ S̃ij + 2(CS∆)2
∣∣∣S̃∣∣∣ S̃ij]

• This can be rewritten as (note: we assume Lij is trace free)

eij = Lij − C2
SMij

where

Mij = 2∆2

[∣∣∣S̃∣∣∣ S̃ij − α2
∣∣∣S̃∣∣∣ S̃ij

]
• Problem: This is 9 equations with only 1 unknown!
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Dynamic Smagorinsky Model

• Lilly (1992) proposed to minimize the error in a least-squares
sense. That is, we want the least-square error of using the
Smagorinsky model in the Germano identity

• The squared error is

e2
ij = (Lij − C2

SMij)
2 = L2

ij − 2C2
SLijMij + (C2

S)2MijMij

• We want the minimum w.r.t. C2
S (i.e., ∂e2

ij/∂C
2
S = 0)

∂e2
ij

∂C2
S

= −2LijMij + 2C2
SMijMij = 0

Solving for C2
S yields

C2
S =

LijMij

MijMij
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Dynamic Smagorinsky Model

• Problem: the above local form of the dynamic Smagorinsky
coefficient is numerically unstable

• Remember that the instantaneously energy cascade can be
forward or backwards

• In simulations, this was found to lead to numerical instability
(having ±C2

S)

• The instability is attributed to high time correlations of C2
S

(i.e., when C2
S is negative at a point it tends to stay negative)

• Why do we have this problem? We had to make 2
assumptions to derive the C2

S equation!
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Assumptions in the Dynamic Model

1st Assumption

• C2
S is constant over the filter width α∆ (– filter in the

equations)

• Recall our basic definition of a convolution filter

φ̃(~x, t) =

∫ ∞
−∞

φ(~x− ~ζ, t)G(~ζ)d~ζ

If we look at the error equations, we notice that C2
S falls

under the bar filter

eij = Lij−
1

3
δijLkk−

[
−2(CSα∆)2

∣∣∣S̃∣∣∣ S̃ij + 2(CS∆)2
∣∣∣S̃∣∣∣ S̃ij]

• This is actually a set of integral equations if we don’t make
our assumption!
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Assumptions in the Dynamic Model

1st Assumption, continued

• Ghosal et al. (1995) solved this equation for C2
S everywhere

using a variational method – which is very expensive and
complex

• The constant C2
S (w.r.t. the test filter) assumption

contributes to the previously discussed numerical instability

• The typical method (instead of the Ghosal method) is to
enforce the Germano identity in an average sense

C2
S =

〈LijMij〉
〈MijMij〉
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Assumptions in the Dynamic Model

1st Assumption, continued
• Constraining C2

S removes its oscillations – resulting in stable
simulations

• Typically, the average is enforced over some region of spatial
homogeneity

• For example in a homogeneous boundary layer over horizontal
planes

• 〈 〉 is an averaging operator, e.g., C2
S varies only in the wall

normal direction
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Assumptions in the Dynamic Model

1st Assumption, continued

• Meneveau et al. (1996) developed the Lagrangian Dynamic
model based on the idea that the Germano identity should be
enforced along fluid particle trajectories

• Using 1st-order time and space estimates, the average of any
quantity A (e.g., Lij) can be defined as

〈A(~x)〉n+1 = γ [A(~x)]n+1 + (1− γ) [A(~x− ~un∆t)]n

where γ ≡ (∆t/Tn)/(1 + ∆t/Tn) and T is the Lagrangian
timescale that controls how far back in time the average goes
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Assumptions in the Dynamic Model

2nd Assumption

• When we applied the Smagorinsky model to the Germano
identity at 2 different scales, we made the assumption that
the same C2

S applies at both scales

• i.e., we assumed C2
S(∆) = C2

S(2∆), or in other words scale
invariance of C2

S

• This assumption is not bad provided that both of our filter
scales ∆ and 2∆ are in the inertial subrange of turbulence

• We will violate this assumption in some region of the flow
(e.g., near the wall in a boundary layer when z ≤ 2∆) for
cases with at least 1 direction of flow anisotropy
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Assumptions in the Dynamic Model

2nd Assumption, continued

• Porté-Agel et al., (2000) developed a generalized dynamic
model where C2

S is a function of scale

• They made the weaker assumption that C2
S follows a power

law distribution at the smallest resolved scales, e.g.

C2
S(2∆)

C2
S(∆

=
C2
S(4∆)

C2
S(2∆
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Assumptions in the Dynamic Model

2nd Assumption, continued

• So now in our equation for C2
S , we have

Mij = 2∆2

[∣∣∣S̃∣∣∣ S̃ij − α2β
∣∣∣S̃∣∣∣ S̃ij

]
where

β =
C2
S(2∆)

C2
S(∆)

is the scale-dependence coefficient
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