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Overview

@ One last review of turbulence (beat it into your heads)
@® Numerical simulations

© Equations of motion



Review: Properties of turbulent flows

Unsteadiness: u = f(Z,t)

Three-dimensional: & = f(z;) for any turbulent flow

High vorticity: w =V x

Mixing effect: turbulence acts to reduce gradients

Continuous spectrum of scales: energy cascade described
broadly by Kolmogorov's hypotheses



Review: Kolmogorov's similarity hypothesis

Kolmogorov's 1%t hypothesis

e Smallests scales receive energy at a rate proportional to the
dissipation of energy rate

e With this, he defined the Kolmogorov (dissipation) scales:
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Review: Kolmogorov's similarity hypothesis

e Using these scales, we can define the ratios of the largest to
smallest scales:
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Review: Kolmogorov's similarity hypothesis

Kolmogorov's 2" hypothesis

e In turbulent flow, a range of scales exists at very high Re
where statistics of motion in a range [ (£, > ¢ > n) have a
universal form that is determined only by € (dissipation) and
independent of v (kinematic viscosity).

e Kolmogorov formed his hypothesis and examined it by looking
at the PDF of velocity increments Au.
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Review: Kolmogorov's similarity hypothesis

e We can examine this through E(k), where E(k)dk =TKE
contained between k£ and £ + dk.

e What are the implications of Kolmogorov's hypothesis for
E(k)? - K4l= E(k) = f(k,€)

e By dimensional analysis, Kolmogorov showed:
E(K) = ¢,?/3k0/3

Kolmogorov's -5/3 power law.



Review: Kolmogorov's similarity hypothesis

Example energy spectrum
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Degrees of freedom and numerical simulations

e We now have a description of turbulence and the range of
energy containing scales (the dynamic range) in turbulence.

e In computational fluid dynamics (CFD), we need to discretize
the equations of motion using either difference approximations
(finite differences) or as a finite number of basis functions
(e.g., Fourier transforms).

e Essentially, a continuous solution is approximated by a finite
set of values corresponding as closely as possible with the
values of the solution on a grid of discrete positions in space.
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Degrees of freedom and numerical simulations

e To capture all of the dynamics (degrees of freedom) in a
turbulent flow, we must consider the required amount of
discrete values needed for an accurate approximation.

e We need a grid fine enough to capture the smallest and the
largest scales of motion (n and £,).
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Degrees of freedom and numerical simulations

e From K41, we know that ¢,/n ~ Re®/4 and there exists a
continuous range of scales between n and /,.

e We will assume that we need n grid points per increment 7.
Note that n can vary, but a value of 3 to 5 is often suggested.

e Thus, in each direction, the number of required grid points is

Eo =n ~o ~n Re3/4

Ne=Gm ="

e Remember that turbulence is 3D, so the total number of grid
points needed to accurately estimate the flow is

N (nRe)

0
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Degrees of freedom and numerical simulations

e Let's revisit our example of a typical atmospheric boundary
layer flow:

Uy~10ms™t, £,~10°m, v~ 1075 m? s7!
which gives us,

Uply (10 m s71)(10% m) 9
R = ~ ~ ]_
€ v 1075 m? g1 0

e thus, the number of grid points required to fully resolve this
flow (assuming n = 3) is

Note: current capabilities of modern computing allow for grid
sizes with O(10!!) points. @
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Degrees of freedom and numerical simulations

e What does a simulation of a typical atmospheric boundary
layer flow using a grid with 1.6 x 10%! points buy? (recall
7 ~ 0.18 mm)

L =n+ (1.6 x 102)"* ~ 2 km

This means we can simulate a 2 km x 2 km x 2 km cube.
Think how big the atmosphere is and then be depressed.
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Degrees of freedom and numerical simulations

e When will we be able to directly simulate all the scales of
motion in a turbulent flow?

e A couple of studies used historical data from the literature to
build a model that predicts this question (see Voller and
Porté-Agel, 2002 and Bou-Zeid, 2014 handouts).

e VP02 derived a model based on Moore's Law
P — A 90-6667Y

where A is the computer power at reference year Y=0.
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Degrees of freedom and numerical simulations

e VP02 used a reference year of 1980 and used A = 100 and
A =10, 000.
e The best fit was

N(t) — 691 X 20.697(year—1980)
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Degrees of freedom and numerical simulations

TABLE IT
Expected Year (+5) That the Given Direct Simulation Will Be Possible
If Grid Size Increases Are Bound by Eq. (2)

Domain Resolution Grid points Expected year
Simulation length scale length scale required (£5 years)
2-D casting 0.1m 1 um (dendrite tip) 10% 2015
2-D casting 1m 1 pm (dendrite tip) 10" 2025
3-D casting 0.lm 1 wm (dendrite tip) 10 2040
Boundary layer 100 m 1 mm 10" 2040
2-D casting 0.1m 1 nm (lattice space) 10' 2045
3-D casting 1m 1 um (dendrite tip) 10% 2055
2-D casting 1m 1 nm (lattice space) 108 2055
Boundary layer 1 km 1 mm 10% 2055
Boundary layer 10 km 1 mm 102! 2070
3-D casting 0.1m 1 nm (lattice space) 10% 2085
3-D casting 1m 1 nm (lattice space) 1077 2100
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Degrees of freedom and numerical simulations

e BZ14 updated VP02 using data between 2002 and 2014. It
turns out that VP02 was too optimistic. Be more depressed.
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Degrees of freedom and numerical simulations

e The Re of relevant flows are orders of magnitude too large for
current computational resources.

e Thus, DNS will not be a suitable tool for a long time
(relevant to our brief time on Earth).

e The only alternative is to simplify the description of a flow
and try to model the small scales instead of resolving them.

e This makes the problem less demanding computationally, but
harder in many aspects due to the modeling requirement.

e Before we delve into methods that accomplish this reduction
of complexity, we need to understand how we describe a flow.

0
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Equations of motion

e Turbulent flow (and fluid dynamics in general) can be
mathematically described by the Navier-Stokes equations (see
Bachelor, 1967 for a derivation, see also Pope chapter 2).

e The primary goal of CFD (and LES) is to solve the discretized
equations of motion.

e We use the continuum hypothesis (i.e., 7 > mean free path
of molecules) so that

Uj :ui(l‘j?t) and P:p(l’j,t)
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Equations of motion: conservation of mass

e Conservation of mass

d
),
t sys
e We can use Reynolds Transport Theorem (RTT, see any fluids
book)
d 0 -
am / pdV  + / pV-dA =0
dt sys ot cv cs
SN——— SN———

rate of increase in CV  net flux leaving CV

Another way of saying that:
Production + Input = Change (in time) + Output (PICO).

0
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Equations of motion: conservation of mass

e We can use Gauss's theorem and shrink the control volume to
an infinitesimal size:

op 0 B
e + %(Puz) =0

This is the differential form of the conservation of mass.

21/33



Equations of motion: conservation of momentum

e Conservation of momentum (Newton's 2" law)

S F = A

We can again apply RTT and Gauss's theorem

d(pu;)  O(puipuj) 0 2 ou; oP
= — (2uS;; — Spd;i—2r | —
o T ow, om, \2M0 T 3Miug ) T o

1 auz 8’LLj
SZ] N 5 (aibj + 833‘1)

is the rate of strain (deformation) tensor.

sYs

+ pgi

where

This is the differential form of the conservation of momentum. @
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Equations of motion: conservation of energy

e Conservation of energy (1%t law of thermodynamics)

. . dE
Q-Ww=""
dt sys
If we use e = ¢, T (specific internal energy and
gi = —KOT/0x; (where ¢, is the specific heat, T is
temperature, and ¢; is the thermal flux), then we arrive at

d(pE) 0 B
5 T oz, [u;(P+ E)] =
. 5’qi 0 2 Bul
P 5 T o, [”f (Mw B 3”‘51%)]

This is the differential form of the conservation of energy. @
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Equations of motion: incompressible flow

Let's consider incompressible flow (i.e., the density of a fluid
element does not change during its motion)

e Conservation of mass
U

oxi

i.e., divergence of the flow velocity is zero.

e Conservation of momentum

8ui Ouiuj _ 10P 82ui

ot or; p Ox; v 81‘?

+ F;
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Equations of motion: incompressible flow

Let's consider incompressible flow (i.e., the density of a fluid
element does not change during its motion)

e Conservation of scalar (temperature, species, etc)
00  Ou,0 0%0

ot o, o T

where
1% 12

and Sc is the Schmidt number (used for scalars) and Pr is the
Prandtl number (used for temperature).

Vg

0
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Equations of motion: incompressible flow

e Recall that

Sc =

v viscous diffusion rate
D=

molecular diffusion rate
and

P v viscous diffusion rate
f = — =

o thermal diffusion rate
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Equations of motion: non-dimensional

e We can non-dimensionalize these equations by using a velocity
scale (U,) and length (¢,) scale. For example, the free-stream
velocity and the boundary layer depth.

e Conservation of mass Bt
u.

1
=0
ox*

(2

e Conservation of momentum:

our  Oujuj or* 1 8%u}
S +
Ot oz dzf  Re 83;;2

+ E}

where Re is based on our velocity and length scales.
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Equations of motion: non-dimensional

e For any general scalar

00*  ourgr 1 0%

ot* + 8:5} ~ Sc Re (‘333].

generally, Sc ~ 1 and Pr ~ 0.72 (for air).
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Properties of Navier-Stokes equations

e Reynolds number similarity - for a range of Re, the equations
of motion can be considered invariant to transformations of
scale.

e Time and space invariance - The equations are invariant to
shifts in time or space, i.e., we can define the shifted space
variable

z==z/L,wherez =2z — X

e Rotational and reflection invariance - The equations are
invariant to rotations and reflections about a fixed axis.

e Invariance to time reflections - The equations are invariant to
reflections in time. They are the same going backward or
forward in time.

e Galilean invariance - The equations are invariant to constant

velocity translations
T=x—Vit @
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Reynolds number similarity

e As an example of using Reynolds number similarity to make
DNS available.

e Recall our example of atmospheric scales that gave a Re of
1097 We cannot afford this, but if we change the viscosity v
from 107° to 1, then Re = 10* - which is doable.

e In fact, all dimensional scales match those of a typical
laboratory experiment.

e We can use Reynolds number similarity to apply findings of
our flow using the modified Re to that of a typical
atmosphere.

0
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Reynolds number similarity
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Figure: Velocity from DNS of a low-level jet. (a) and (b) have different @
slope angles.
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Reynolds number similarity
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Figure: TKE from DNS of a low-level jet. (a) and (b) have different slope
angles.
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Reynolds number similarity

e You see that by changing the scaling, we still get results that
seem to match the behavior of a flow with a larger Re.

e This is an example of using Reynolds number similarity.
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