LARGE-EDDY SiIMULATION OF TURBULENT FLOWS

ME EN 7960-003 Homework #3 Solutions Due: December 1%

1. Using the basic properties of convolution filters and starting with the scalar conservation equation
given by
00 00 1 0%

9 " “iom, = SeReon? "9

(a) derive the filtered scalar conservation equation. Clearly show each step in the process and clearly
define the subfilter scale term.
We apply the filter

—~ - —

N4
9 90 1 9%

ot Jrul(?ixi ~ ScRe 6m? +@
Note that the filter commutes with differentiation and that:
0 " _ -
= Uj— o arrive at — =
o0x; ' Ox; T ot ox; ScRe ax?

We can decompose the unknown term following Leonard (1974) as
uib = Ui + i

where ¢; is the SFS scalar flux. The filtered scalar conservation equation is then given by

@+am§_ 1 9% g
ot dx;  ScRe 83712 ox;

(b) Use Leonard’s decomposition (Leonard, Adv. Geophys. 1974) to decompose your answer to (a)
and label terms that indicate the SFS Reynolds flux, interaction between resolved and unresolved
scales, and the interaction amongst the smallest resolved scales (Leonard term).

Decompose the parts of the unknown term of ¢; by using u; = u; + «} and § = 0+0

—~— —~~—

uil) = (; +u) (0 +0) :ﬂia—i-w—i-u;g#—w
Using this decomposition, the SFS scalar flux is given by

¢ = Lij + Cij + Rj

where
Li; = 5-5— ﬁ,g — interaction among the smallest resolved scales
Cij = ﬁ + ;;\5 — interaction among resolved and unresolved scales
Rij =0/ — SFS Reynolds flux
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2. Using the filtered conservation of momentum equation given by:

ou;  Odwu; 9P 1 9% Omy

- o - Ea
ot Ox;j Ox; * Re 83:? Ox;j *

derive an equation for the residual kinetic energy k, = %Tu Clearly identify the following terms in the
equation: all transport terms (i.e., terms that don’t create or destroy SFS energy), SFS energy transfer
(i.e., IT), and viscous dissipation of energy.

The main idea is to use the relationship E = E\} + k, to derive a balance equation for k,., where Eis
the total filtered KE, EY is the resolved TKE, and k;. is the SGS TKE.

First, multiply the filtered momentum equation by u; and follow the steps in Lecture 7 to arrive at

OBy  O(;E;)  d(wp) 2 9(uSi) A(Wii;)
+ = — - — — e — II = (D)
875 83:]- 81‘1 Re 8:1/‘]' Oxj
~— —\ —— —m— T —\—
Al A2 A3 A4 A5 A6 A7
Next, filter the product of u; and the unfiltered momentum equation
—~ —~ 2 —
uaui +u‘8(uiuj) B _u‘@ 282%
‘ot " 9x;  '0z; Re 83:?
Following similar procedures as in Lecture 7, we arrive at
8£ 4 8(u]E) _ a(@) o ga(quw) . (2)
ot Ox; ox; Re Ox;
~ —— —_— ——
Bl B2 B3 B4 B5
Finally, subtract Eq. (1) from Eq. (2)
OE 0E; O(E—E;) . 0Ok,
Bl —Al: — — = ot = —
ot ot ot ot
B2 — A2 - 8(u]E) _ G(ﬂjEf) _ 8(UJE) . 8ﬁj(E - kr) _ 8(UJE - ﬁjE) 4 8kr
' a$j a$j a’L‘j al‘j 8xj 8:1/‘]'
By as. Op)  O(EH) _ Olip— iip)
B4 — A4 38(%5’”) _ 38(17152]) _ ia(ulSw — ﬂZSU)
Re 8l'j Re 8Ij Re 8xj
BS—A5:e—¢€r =¢
Finally we put everything together
Oker . Ok _ OB —WE)  O(wp—wip) 2 (wSy —WiSy) 0Wimy) o
ot 8.%]‘ 81']' 8951 Re 81’j 8.%'j "
~— =~ ~ —_— ~~ =~
C1 2 C3 C4 C5 c6 c7 c8

C1 is storage, C2 is advection, C3 is energy transport, C4 is pressure transport, C5 is viscous stress
transport, C6 is SFS stress transport, C7 is dissipation by viscous stress, C8 is SFS dissipation
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3. Derive an equation for the SFS scalar flux bulk coefficient C2S cst that appears in the Smagorinsky
eddy-diffusivity model given by:

sfs

AQCQSc*1|S|ﬁ,
ox;
using the dynamic procedure (assume scale invariance). Clearly list any assumptions that you make
along the way.
The actual SFS scalar flux is given by

q; = UZQ — 1715

We can also write the SFS scalar flux at the test filter («A) as

Qi = ﬁ — w0
and consider the stress at the smallest resolved scales
L = ﬁ - 575
We combine these algebraically to form the Germano identity
Lip = Qi — q;

First, we assume that the same model can be applied at A and aA. Using the Smagorinsky model,

Lig = —a*A*CZSc C3Sc |S|

sfs sfs

We also have assumed that C is applied the same at different filter widths (scale—invariance) and that
(5 is constant across the test filter width oA (denoted by —). Next, we define the error as

e; = Lig — C2Sc ! M;

sfs
where

M; = A?

~ 00 = 00
\5\%—04 p)

Following Lilly (1992), we apply a least-squares approach to minimize the error

e = L2 — 202Scl LigM; + (C2Sc )2 M; M;
We want the minimum w.r.t. C’QS csfs :
‘976%21 = —2L;gM; + 202 Sc ! M;M; = 0
0(C2%Scy,)
Which yields
_ LigM;
C2Scy =~
sfs MiMi

Since the assumption of constant CSScs_fS1 contributes to numerical instability, we can apply an aver-

aging operator
_ (Light;)

2
C Scg sfs <M1Ml>
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4. Starting with SFS scalar flux given by:

4 = wif — U0,

derive a scale similarity model following Liu et al., (J. Fluid Mech. 1994). Clearly state all assump-
tions.
Consider the following bands around the cutoff filter A

A A=
log(E(k)) o

Assume (") terms are constant under the (-) operator

G = 0 — il — 0 — i — il + i+ 5+ 54
gi = W0 — W0
qi = Lig

We assume that there is a similarity between ¢; and L;g. We choose a linear relationship

where experimental data has shown Cp, ~ 1.
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5. Derive a scale-dependent dynamic model for the SFS stress based on the Wong-Lilly model (Wong,
Lilly; Phys. Fluids, 1994) for the SFS stress given by:

1 ~
Tij — g’l’kk = —205A4/3S1‘j

You will need to use Germano’s identity (Germano et al., Phys. Fluids, 1991) at two different scales
to do this and you should end up with an algebraic expression for C, where C is a function of A (and
the resolved velocity field). Clearly state all assumptions that you make along the way.

Using the Germano identity, L;; = T;; — 7;;, where L;; is the Leonard stress and T, is the SFS stress
term applied at a test filter (denoted —) width (aA).

Let’s look at the Germano identity for a filter width of A (~) and a test filter width of 2A (—). We will
assume that the Wong-Lilly model is applicable at our multiple filter widths. Scale-invariance is not
assumed, so we introduce a scale-dependent term that follows a power-law distribution at the smallest
resolved scales (i.e., Cc 2n /Ce = Ceun/Cean), wWhichis givenby = Cc 2a /Cc and B2 = Cean/Ce:
T3(20) = —2C. o (20)Y/38,;
Tij = _205A4/3§ij
Lijan = Tij(28) — 7ij
= 2027 (20)*35,; + 20.A%35;
= 20 2YBAY3G,B + 20, AY3S,

= —2C.AM35,; (238 — 1)

Similarly, when applied at a test filter width of 4A:

Ty (4A) = —2C. 4a (40135,
Tij = —QC€A4/3§Z']‘
Lijon = Ti;(2A) — 75
= _206,4A(4A)4/3§ij + 205A4/3§ij
— —2CAYBAYBS B2 + 20 AV

= —2C.AM3G,; (44382 — 1)

Next, we define our error for the 2A test filter, assume the Leonard stress is trace-free, and minimize
the error using a least-squares approach:

62' - (LU - CeMij)27 where MZ = _2A4/3§U (24/3ﬁ - ]‘)

)

86%
aC = —2LijMi]’ + QCEMijMZ'j =0
o = LijMij)
(Mij Mi;)
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We repeat the procedure for the 4A test filter:

v

ae?j
oC = _2LijNij + QCeNijNij =0
o = LigNij)
(NijNij)

Equating the two expressions for C yields

(LijM;j)(NijNij) — (LijNij)(M;; M;z) = 0

62' = (LZ] - CeNij)2> where NZ = _2A4/3§ij(44/3182 - ]‘)

From this we can construct an algebraic expression for 3 via M;; and N;;. Once we have 3, we can

compute M;;, and thus C,
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