
Large-Eddy Simulation of Turbulent Flows

ME EN 7960-003 Homework #3 Solutions Due: December 1st

1. Using the basic properties of convolution filters and starting with the scalar conservation equation
given by

∂θ

∂t
+ ui

∂θ

∂xi
=

1

ScRe

∂2θ

∂x2
i

+Q :

(a) derive the filtered scalar conservation equation. Clearly show each step in the process and clearly
define the subfilter scale term.
We apply the filter

∂θ

∂t

∼
+ ui

∂θ

∂xi

∼
=

1

ScRe

∂2θ

∂x2
i

∼
+Q

Note that the filter commutes with differentiation and that:

∂uiθ

∂xi
= ui

∂θ

∂xi
+
�

�
���

0

θ
∂ui
∂xi

to arrive at
∂θ̃

∂t
+
∂ũiθ

∂xi
=

1

ScRe

∂2θ̃

∂x2
i

We can decompose the unknown term following Leonard (1974) as

ũiθ = ũiθ̃ + qi

where qi is the SFS scalar flux. The filtered scalar conservation equation is then given by

∂θ̃

∂t
+
∂ũiθ̃

∂xi
=

1

ScRe

∂2θ̃

∂x2
i

− ∂qi
∂xi

(b) Use Leonard’s decomposition (Leonard, Adv. Geophys. 1974) to decompose your answer to (a)
and label terms that indicate the SFS Reynolds flux, interaction between resolved and unresolved
scales, and the interaction amongst the smallest resolved scales (Leonard term).
Decompose the parts of the unknown term of qi by using ui = ũi + u′i and θ = θ̃ + θ′

ũiθ = (ũi + u′i)(θ̃ + θ′)
∼

= ũiθ̃
∼

+ ũiθ
′∼+ u′iθ̃
∼

+ u′iθ
′∼

Using this decomposition, the SFS scalar flux is given by

qi = Lij + Cij +Rij

where

Lij = ũiθ̃
∼
− ũiθ̃ → interaction among the smallest resolved scales

Cij = ũiθ
′∼+ u′iθ̃
∼

→ interaction among resolved and unresolved scales

Rij = u′iθ
′∼ → SFS Reynolds flux
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2. Using the filtered conservation of momentum equation given by:

∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂P̃
∂xi

+
1

Re

∂2ũi
∂x2

j

− ∂τij
∂xj

+ Fi,

derive an equation for the residual kinetic energy kr = 1
2τii. Clearly identify the following terms in the

equation: all transport terms (i.e., terms that don’t create or destroy SFS energy), SFS energy transfer
(i.e., Π), and viscous dissipation of energy.

The main idea is to use the relationship Ẽ = Ẽf + kr to derive a balance equation for kr, where Ẽ is
the total filtered KE, Ẽf is the resolved TKE, and kr is the SGS TKE.

First, multiply the filtered momentum equation by ui and follow the steps in Lecture 7 to arrive at

∂Ẽf
∂t︸︷︷︸
A1

+
∂(ũjẼf )

∂xj︸ ︷︷ ︸
A2

= − ∂(ũip̃)

∂xi︸ ︷︷ ︸
A3

− 2

Re
∂(ũiS̃ij)

∂xj︸ ︷︷ ︸
A4

− εf︸︷︷︸
A5

− Π︸︷︷︸
A6

− ∂(ũiτij)

∂xj︸ ︷︷ ︸
A7

(1)

Next, filter the product of ui and the unfiltered momentum equation

ui
∂ui
∂t

∼
+ ui

∂(uiuj)

∂xj

∼
= −ui

∂p

∂xj

∼
+
ui
Re

∂2ui
∂x2

j

∼

Following similar procedures as in Lecture 7, we arrive at

∂Ẽ

∂t︸︷︷︸
B1

+
∂(ũjE)

∂xj︸ ︷︷ ︸
B2

= − ∂(ũip)

∂xi︸ ︷︷ ︸
B3

− 2

Re
∂(ũiSij)

∂xj︸ ︷︷ ︸
B4

− ε︸︷︷︸
B5

(2)

Finally, subtract Eq. (1) from Eq. (2)

B1− A1 :
∂Ẽ

∂t
−
∂Ẽf
∂t

=
∂(Ẽ − Ẽf )

∂t
∂t =

∂k̃r
∂t

B2− A2 :
∂(ũjE)

∂xj
−
∂(ũjẼf )

∂xj
=
∂(ũjE)

∂xj
− ∂ũj(Ẽ − kr)

∂xj
=
∂(ũjE − ũjẼ)

∂xj
+
∂k̃r
∂xj

B3− A3 :
∂(ũip)

∂xi
− ∂(ũip̃)

∂xi
=
∂(ũip− ũip̃)

∂xi

B4− A4 :
2

Re
∂(ũiSij)

∂xj
− 2

Re
∂(ũiS̃ij)

∂xj
=

2

Re
∂(ũiSij − ũiS̃ij)

∂xj

B5− A5 : ε− εf = εr

Finally we put everything together

∂k̃r
∂t︸︷︷︸
C1

+
∂k̃r
∂xj︸︷︷︸
C2

=
∂(ũjE − ũjẼ)

∂xj︸ ︷︷ ︸
C3

− ∂(ũip− ũip̃)
∂xi︸ ︷︷ ︸
C4

− 2

Re
∂(ũiSij − ũiS̃ij)

∂xj︸ ︷︷ ︸
C5

− ∂(ũiτij)

∂xj︸ ︷︷ ︸
C6

− εr︸︷︷︸
C7

− Π︸︷︷︸
C8

C1 is storage, C2 is advection, C3 is energy transport, C4 is pressure transport, C5 is viscous stress
transport, C6 is SFS stress transport, C7 is dissipation by viscous stress, C8 is SFS dissipation
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3. Derive an equation for the SFS scalar flux bulk coefficient C2
sSc

−1
sfs that appears in the Smagorinsky

eddy-diffusivity model given by:

qi = −∆2C2
sSc

−1
sfs |S̃|

∂θ̃

∂xi
,

using the dynamic procedure (assume scale invariance). Clearly list any assumptions that you make
along the way.
The actual SFS scalar flux is given by

qi = ũiθ − ũiθ̃

We can also write the SFS scalar flux at the test filter (α∆) as

Qi = ũiθ − ũiθ̃

and consider the stress at the smallest resolved scales

Liθ = ũiθ̃ − ũiθ̃

We combine these algebraically to form the Germano identity

Liθ = Qi − qi

First, we assume that the same model can be applied at ∆ and α∆. Using the Smagorinsky model,

Liθ = −α2∆2C2
sSc

−1
sfs |S̃|

∂θ̃

∂xi
+ ∆2C2

sSc
−1
sfs |S̃|

∂θ̃

∂xi

We also have assumed that Cs is applied the same at different filter widths (scale-invariance) and that
Cs is constant across the test filter width α∆ (denoted by −). Next, we define the error as

ei = Liθ − C2
sSc

−1
sfsMi

where

Mi = ∆2

[
|S̃| ∂θ̃

∂xi
− α2|S̃| ∂θ̃

∂xi

]
Following Lilly (1992), we apply a least-squares approach to minimize the error

e2
i = L2

iθ − 2C2
sSc

−1
sfs LiθMi + (C2

sSc
−1
sfs )2MiMi

We want the minimum w.r.t. C2
sSc

−1
sfs :

∂e2
i

∂(C2
sSc

−1
sfs )

= −2LiθMi + 2C2
sSc

−1
sfsMiMi = 0

Which yields
C2
sSc

−1
sfs =

LiθMi

MiMi

Since the assumption of constant CsSc−1
sfs contributes to numerical instability, we can apply an aver-

aging operator

C2
sSc

−1
sfs =

〈LiθMi〉
〈MiMi〉
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4. Starting with SFS scalar flux given by:

qi = ũiθ − ũiθ̃,

derive a scale similarity model following Liu et al., (J. Fluid Mech. 1994). Clearly state all assump-
tions.
Consider the following bands around the cutoff filter ∆

Liu et al. (1994) found that the band between ∆ (∼) and 4∆ (^) provided the best estimate. For qi:

qn−1
i = (ũi − ûi)(θ̃ − θ̂)− (ũi − ûi)(θ̃ − θ̂)

= ũiθ̃ − ûiθ̃ − ũiθ̂ + ûiθ̂ − (ũi − ûi)(θ̃ − θ̂)

Assume (^) terms are constant under the (-) operator

qi = ũiθ̃ −�
��

ûiθ̃ −�
��ũiθ̂ −�

��ûiθ̂ − ũiθ̃ + �
��

ûiθ̃ + �
��ũiθ̂ + �

��ûiθ̂

qi = ũiθ̃ − ũiθ̃
qi = Liθ

We assume that there is a similarity between qi and Liθ. We choose a linear relationship

qi = CLLiθ

where experimental data has shown CL ∼ 1.
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5. Derive a scale-dependent dynamic model for the SFS stress based on the Wong-Lilly model (Wong,
Lilly; Phys. Fluids, 1994) for the SFS stress given by:

τij −
1

3
τkk = −2Cε∆

4/3S̃ij

You will need to use Germano’s identity (Germano et al., Phys. Fluids, 1991) at two different scales
to do this and you should end up with an algebraic expression for Cε, where Cε is a function of ∆ (and
the resolved velocity field). Clearly state all assumptions that you make along the way.
Using the Germano identity, Lij = Tij − τ ij , where Lij is the Leonard stress and Tij is the SFS stress
term applied at a test filter (denoted −) width (α∆).

Let’s look at the Germano identity for a filter width of ∆ (∼) and a test filter width of 2∆ (−). We will
assume that the Wong-Lilly model is applicable at our multiple filter widths. Scale-invariance is not
assumed, so we introduce a scale-dependent term that follows a power-law distribution at the smallest
resolved scales (i.e.,Cε,2∆/Cε = Cε,4∆/Cε,2∆), which is given by β = Cε,2∆/Cε and β2 = Cε,4∆/Cε:

Tij(2∆) = −2Cε,2∆(2∆)4/3S̃ij

τ̄ij = −2Cε∆
4/3S̃ij

Lij,2∆ = Tij(2∆)− τ̄ij

= −2Cε,2∆(2∆)4/3S̃ij + 2Cε∆
4/3S̃ij

= −2Cε2
4/3∆4/3S̃ijβ + 2Cε∆

4/3S̃ij

= −2Cε∆
4/3S̃ij(2

4/3β − 1)

Similarly, when applied at a test filter width of 4∆:

Tij(4∆) = −2Cε,4∆(4∆)4/3S̃ij

τ̄ij = −2Cε∆
4/3S̃ij

Lij,2∆ = Tij(2∆)− τ̄ij

= −2Cε,4∆(4∆)4/3S̃ij + 2Cε∆
4/3S̃ij

= −2Cε4
4/3∆4/3S̃ijβ

2 + 2Cε∆
4/3S̃ij

= −2Cε∆
4/3S̃ij(4

4/3β2 − 1)

Next, we define our error for the 2∆ test filter, assume the Leonard stress is trace-free, and minimize
the error using a least-squares approach:

e2
ij = (Lij − CεMij)

2, where Mij = −2∆4/3S̃ij(2
4/3β − 1)

∂e2
ij

∂Cε
= −2LijMij + 2CεMijMij = 0

Cε =
〈LijMij〉
〈MijMij〉
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We repeat the procedure for the 4∆ test filter:

e2
ij = (Lij − CεNij)

2, where Nij = −2∆4/3S̃ij(4
4/3β2 − 1)

∂e2
ij

∂Cε
= −2LijNij + 2CεNijNij = 0

Cε =
〈LijNij〉
〈NijNij〉

Equating the two expressions for Cε yields

〈LijMij〉〈NijNij〉 − 〈LijNij〉〈MijMij〉 = 0

From this we can construct an algebraic expression for β viaMij and Nij . Once we have β, we can
computeMij , and thus Cε
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