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The subgrid-scale closure method developed by German0 et al. [Phys. Fluids A 3, 1760 
(1991)] is modified by use of a least squares technique to minimize the difference between the 
closure assumption and the resolved stresses. This modification removes a source of 
singularity and is believed to improve the method’s applicability. 

Recently German0 et al. ’ subsequently designated G4, 
developed a new subgrid-scale (SGS) closure that appears 
to offer marked advantages over the widely used 
Smagorinsky,” hence S, closure. The S closure was first 
applied extensively to three-dimensional turbulence simu- 
lations by Deardorff.3 Lilly4 had earlier evaluated the nec- 
essary dimensionless coefficient for the S model, based on 
the assumption that the grid scale lies within an isotropic 
and homogeneous inertial range of turbulence. As de- 
scribed by Deardorff,5 Lilly’s value of the coefficient 
worked well when applied to turbulence produced by 
buoyant instability. For shear-driven turbulence, however, 
Deardorff and others found it necessary to use a smaller 
coefficient. These discrepancies have been verified by other 
investigators, but the reasons remain somewhat obscure. 

The G4 closure assumes use of the S formulation, but 
allows for temporal and spatial variability of the coeffi- 
cient. It is determined by evaluating the stress-strain rela- 
tionship at scales of motion a little larger than the grid 
scale, for which the stresses are explicitly resolved. In the 
present analysis, we follow G4 and also Moin et a1.,6 who 
extend the G4 analysis to compressible flow and advection 
of a passive scalar. A potentially important modification is 
introduced, by which the stress-strain relationship is opti- 
mized with a least squares approach. This also removes or 
reduces a singularity problem in the G4 formulation. 

We assume incompressible Boussinesq dynamics. The 
tensor equation of motion for variables that have been spa- 
tially averaged or filtered on the scale of their spatial res- 
olution is given by 

aiif _ aiii a; arii 
-pujp-=~' 

j axi , 
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where the overbar represents the spatial filtering, hence 
called the grid-scale filter. The variable rr is pressure di- 
vided by a reference density, while the SGS stress tensor 
3 is defined by 

- 
Tr/ = (i?iiij - U&j). (2) 

Viscous terms have been neglected. Incompressible conti- 
nuity has been assumed for the grid-filtered variables, so 
that 

&ij 
-=o 
axj . (3) 

A second, coarser spatial filter, called the “test” filter, is 
now applied, and signified by a caret over the overbar. The 
test-filtered equations of motion are written as 

(4) 

The test-filtered continuity equation is similar to (3). 
The S closure, applied to the SGS stress defined in (2)) 

is given by 
- - 

rq- f6,ykk = 2CA21S&, (5) 

where 6, = 1 if i =i and zero otherwise, 3, = (&ij/axj 
+ acj/dxi)/2, and 1s 1 

- - 
= ( 2S,$kl) I”. The quantity C is 

the Smagorinsky coefficient (actually the square of the 
original quantity), and A is the grid filter scale, typically 
equal to the grid spacing. The second term on the Ihs as- 
sures that, in the absence of shear, the stress tensor is 
isotropic, with its trace equal to minus twice the subgrid- 
scale kinetic energy. The subtest-scale (STS) stress T,., is 
similarly approximated by 

Tif - fSijTkk = 2C~2 1~ J ~ii (6) 

with the test-scale shears defined similarly to ihose for the 
grid scale. The test filter scale is signified by A. 

The major insight to the SGS problem contributed by 
G4 is the recognition that consistency between (5) and (6) 
depends on a proper local choice of C. This is shown by 
subtraction of the test-scale average of ri/ from Tq to obtain 

- ^1 
L,= Tii- r^ ii= - UiUj+ UiU~ (7) 

The elements of L are the resolved components of the 
stress tensor associated with scales of motion between the 
test scale and the grid scale. We will call these scales the 
“test window.” The test-window stresses, the rhs of (7), 
can be explicitly evaluated and compared locally with the S 
closure approximation by subtracting the test-scale average 
of (5) from (6), i.e., 

L/j - f6ijLkk = 2CMfj, 

where 

Mu= 3,3,5,- *zg$ (9) 

One now seeks the value of C that solves (8) and then 
applies that value to (5). Since (8) represents five inde- 
pendent equations in one unknown, no value of C can be 
chosen to make it correct. Its error can be minimized by 
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applying a least squares approach. Define Q to be the 
square of the error in (8), i.e., 

Q = (L, - {6ijLkk - 2CMv)2. 

Upon setting aQ/aC = 0, C is evaluated as 

(10) 

c = f(L#u/M$. (11) 

This represents the minimum of Q, since it is easily shown 
that a2Q/aC2 > 0. Note that the isotropizing term in (8) 
and ( 10) does not appear in the numerator of ( 11) because 
gii = 0 in an incompressible flow. 

The above evaluation of C differs from that of G4, who 
contract (8) by multiplying both sides by 3, to obtain 

C=f(L$‘ij/M&j). (12) 

By this process, they equate one of the many possible pro- 
jections of (8). The physical meaning of ( 12) is not obvi- 
ous, although it is dimensionally similar to equating the 
rates of energy dissipation from the grid and test scales. In 
tests using data from direct simulations, G4 found that the 
denominator of ( 12) could vanish or become so small as to 
lead to a computationally unstable value of C. To avoid 
this problem they averaged the numerator and denomina- 
tor over planes parallel to the lower boundary, thereby 
perhaps losing some of the conceptual advantages of their 
formulation. By contrast, the denominator of ( 11) can 
vanish only if each of the five independent components of 
Mii vanish separately, that is if the test scale strain vanishes 
completely. In that case, the numerator vanishes also. 

Main’ reports that ( 11) has now been tested in simu- 
lations with apparently favorable results. He states, how- 
ever, that, if the method is applied to individual grid 
points, the value of C still becomes large enough occasion- 
ally to lead to computational instability. We have carried 
out (but do not show here) a brief statistical analysis of 
( 11)) assuming that Lv and Mii are Gaussian variables. It 
is found that the variance of C is proportional to 
bI/uM)2, where aL and PM are the standard deviations of 
the L’s and M’s. The proportionality constant varies in- 
versely with the number of degrees of freedom, suggesting 
that some averaging may be necessary to avoid excessively 
large values. Alternatively, isolated large values of C may 
simply be truncated. 

The G4 method, with the above modification, appears 
to be a plausible solution to an old but previously unreal- 
ized goal of large eddy simulation, which is to improve the 
SGS closure by “tuning” it to match the statistical struc- 
ture of resolved turbulent eddies. The numerator of ( 11)) 
and therefore the sign of C, can locally become negative, 
leading to “backscatter,” i.e., transfer of energy upscale. 
This is regarded by G4 as a favorable aspect of their clo- 
sure method, since it recognizes the ability of the subgrid 
scales to add randomness to the explicit scales. By com- 
paring large eddy simulations with direct simulations of 
higher resolution, G4 found that their stresses are much 
better correlated with the direct-simulation stresses than 
are those of the S closure. G4 found the optimum ratio of 

the test and grid scales to be z/A =5 2. Thus the compo- 
nents of L and M occupy the highest resolvable octave in 
wave space. 

Moin et aL6 show an extension of the G4 analysis to a 
compressible gas and to SGS flux of temperature. They 
also show a method for determining an optimal local value 
of the turbulent Prandtl number, and by extension the 
viscosity-diffusivity ratio for any conserved scalar. We out- 
line their scalar transport analysis here in simplified Bous- 
sinesq form, and again solve with a least squares technique. 
Temperature is assumed to be a conserved variable. The 
evolution of the grid-filtered temperature is therefore given 
by - - 

dT --+;j;?&acli,F-rT) Eaze 
J axi J 

(13) 

Similarly the test-filtered temperature evolves according to 

a? h --+ cjg.=" (gjp-$-j =z, 
J axi J 

(14) 

where hj and Hj are SGS and STS temperature fluxes, re- 
spectively. The S closure is now applied to hj and Hjp i.e., 

- 
2CA2 - aT 

hj=-j5F IsI aX, 

and 

(15) 

(16) 

where the eddy Prandtl number Pr remains to be deter- 
mined. Upon defi_ning the test-window temperature fluxes, 
Pj = Hj - hj = T iii - ~~j, a least squares procedure is 
again applied, leading to the Prandtl number prediction, 

1 1 PjRj M;k Ppj 
- -5 - 
Pr 2C -$- = LikMik 7 ’ (17) 

where ( 11) has been used to obtain the second equality, 
and 

3 - 

(18) 

Again ( 17) involves only explicit variables and is likely to 
be well behaved. 

ACKNOWLEDGMENTS 

I am indebted to P. Moin, M. Germano, and especially 
Z. Kogan for helpful comments. 

This work was supported by the National Science 
Foundation through Grants No. ATM-8914434 and No. 
8809862, the latter to the Center for the Analysis and Pre- 
diction of Storms. 

‘M. Germano, U. Piomelli, P. Moin, and W. II Cabot, “A dynamic 
subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760 (1991). 

‘J. Smagorinsky, “General circulation experiments with the primitive 
equations, I. The basic experiment,” Mon. Weather Rev. 91,99 (1963). 

‘J. W. Deardorff, “A three-dimensional numerical study of turbulent 
channel flow at large Reynolds numbers,” J. Fluid Mech. 41, 453 
(1970). 

634 Phys. Fluids A, Vol. 4, No. 3, March 1992 Brief Communications 634 

Downloaded 19 Jul 2009 to 129.15.109.254. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



‘D. K. Lilly, “On the application of the eddy viscosity concept in the 
inertial sub-range of turbulence,” NCAR Manuscript No. 123, National 
Center for Atmospheric Research, Boulder, CO, 1966. 

“J. W. Deardorff, “On the magnitude of the subgrid scale eddy coeffi- 
cient,” J. Comput. Phys. 7, 120 (1971). 

‘P. Moin, K. Squires, W. Cabot, and S. Lee, “A dynamic subgrid-scale 
model for compressible turbulence and scalar transport,” Phys. Fluids 
A 3, 2746 (1991). 

‘P. Moin (private communication). 

635 Phys. Fluids A, Vol. 4, No. 3, March 1992 Brief Communications 635 

Downloaded 19 Jul 2009 to 129.15.109.254. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp


