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Abstract

Models for subgrid-scale turbulence are ana-—
lvzed. The analysis indicates that there Is enough
Information in the resolved scales to allow some of
the characteristics of the complete flow field te
be determined. The kiretic energy of the small-
scale motions can be decomposed 1into two parts.
One is due to energy transfer from the large scales
and is correlated with them; the other is uncorre-
lated. This leads to a two-component eddy-
vigcosity madel. The "productlion equals dissipa-
tion" argument does not hold for the small scales
in the decay of turbulence because it does not
account for the uncorrelated compenent. The two-
component model can be reduced to the single-
component models that have been used previously,
but 1t shows some of the flaws In arguments made
earlier and explalns some of the discrepancies that
have been observed.

The exchange hetween the large and small
scales takes place mainly between the smallest
scales of the former and the largest scales of the
latter. This argument is the basls of a new model
which preliminary tests show to be superior to the
Smagorinsky model that has been used heretofore.
Finally, a new length scale for use with aniso-
tropic filters is proposed.

I. Introduction

Turbulent flows contain structures of variocus
length scales. The large-scale wmotions contaln
most of the energy, are anisotropic, and do most of
the transporting, while the small-scale motions are
mainly dissipative. Present computer capabllities
do neot allow computation of all scales of motion,
except for very low Reynolds numbers. Large-eddy
simuzlation (LES) attempts to compute the large
scales and model the small ones (the so-called
subgrid scale or S5GS5 motions) at higher Reynolds
numbers.

The simplest 8GS models assume that the SG§
Reynolds stress tensor is proportional to the
stress teasor, of the large—scale fileld.
The proportionalit§jfactor is the SGS eddy viscos-
ity In particular, the Smagorinsky model
(Smagor¥nsky, 1963), _assumes the eddy viscosity is
proportional to AZ|S|  while, the vorticity model
assumes it proportional to A uwl. These models
are currently used by the Stanford and Queen Mary
College groups, as stated by Ferziger and Leslie
(1979). Some unresolved lssues on SGS modeling
have been presented by Herring (1977) and/or
Ferziger and Leslie (1979). The chief of these
follow.

"Production Equals Digsipation”

This argument assumes that the rate of trans-
fer of energy from the resolved motfions to the
small scales is equal to the rate of dissipation in
the small scales and can be used to derive the
above models.

#
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This argument 1s not valid in the decay of
turbulence, because it neglects the decay of the
energy initially in the small scales. However, the
Smagorinsky and vorticity models have been success-
fully used by Kwak et al. (1975) and Shaanan et al.
(1975), among othera, to simulate the (filtered)
decay of homogeneous isotropic turbulence experi-
ments of Comte—Rellot and Corrsin (1971).

Veloclty Scale

Most eddy-viscosity models assume v_ ~ gqb
and thus require a velocity scale ¢ of the small-
scale motions. _ The Smagorinsky model further
assumes q ~ (A8). MeMillan 4nd TFerziger {1979)
found that this relation is not very accurate. On
the other hand, the model has been used success—
fully.

Smagorinsky Constant

The constant in Smagorinsky's eddy viscosity
model has been determined by Lilly's (1967) theo-
retical argument as ~ 0.2. Similar values were
found by Clark et al. (1977) through a “complete”
simulation of a low Reynolds number flow, and by
Kwak et al. (1977) and Shaanan et al. (1977) by
fitting the (filtered) experimental decay of tur—
bulence. On the other hand, Deardorff (1970) and
Schumann (1973) found that this value of the param-
eter damped too much energy in the simulation of a
channel flow. Their empirfical results led to a
constant of 0.1 for the Smagorinsky model.

Defiltering

An approach to LES which defines the large
scales by spatial filtering is presented in Appen-—
dix A. This approach 1s currently used by the
Stanford, NASA-Ames, and Queen Mary College groups.
4 "defiltering” process which could produce the
characteristics of the flow from LES has not yet
been preseated. Such a process would ifmprove ocur
understanding of 863 models and would also allow
comparison with actual experimental results.

The analysis presented below shed some light
on these issues. In particular, 1t does not re-
quire the "production equals dissipation” argument;
it allows estimation of some of the characteristic
scales of the flow field from resolved varilables
and leads to a "two-component” eddy viscosity model
which simplifies to the eddy-viscosity models when

A& << Ly it explains the poor correlation between
q and |AS| and explains some of the difference
hetween the wvalues of the Smagorinsky constant
found by wvarious authors. We shall also discuss
length scales for use with anisotropic grids and
suggest new subgrid-scale models. The main
objective of this work is to reach a better under-
standing of the simplest SG5 models in order to
derive better models and thereby to {lmprove the
simulation of different turbulent flows,

The equations describing the complete flow
field f(u) and resclvable or filtered flow field
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(u) are presented in Appendix B of this work. A
stmple way to close the filtered equations 1is
through use of an eddy viscosity model. A success-
ful eddy-viscosity model should accurately repre-
sent the effects of the small scales in terms of
the resolved variables. We shall therefore try to
defilter the resolved field first and to model the
eddy viscosity afterwards.

The analysis 1s compared with the turbulence
decay experiment of Comte-Bellot and Corrsin
(1971); 1in particular, we use the experimental case
with U_ = 10 m/s, M = 5.08 cm, and R, = 70.
The constants are suitable for this flow but apply
to their other cases with only slightly less accur-
acy.

II. Defiltering

The priancipal quantities in the decay of tur-
bulence are the turbulence kinetic energy, the dis—
sipation rate, and a suitable length scale; this is
the case for both the full and filtered fields.
Dimensional analysis for the full and filtered
fields at high Reynolds number leads to the rela-
tionships presented in Table 1 below. Recall that
the "dissfpation” in the filtered field is actually
the energy transferred to the small-scale fleld.

As Lilly (1967) suggested, L 1is the average
length scale of the energy-contalning eddies. This
length scale makes the normalized large-scale spec—
trum independent of Reynolds number (see Tennekes
and Lumley, 1978, p. 267).

The filtered field contains the same large
eddies as the full field, so we expect:

Ly ~ L (1)
Therefore, from the first line of Table 1, we also
expect

EZ/S - €2/3
£
This last equation tells us that, since filtering
reguceszthe kinetic energy of the flow (i.e.,

Q ¢ Q), the rate of energy transfer from the
resolved scales to the small scales, £_, is
smaller than the total rate of dissipation,

€ (t.e., €_ € €). The difference Is due to the
decay of thé energy which was Iinitially ia the
small scales and 1is frequently quite large. One
cannot apply the "production equals dissipation”
argument to the small scales 1f this is the case.

/e @

The small-scale fleld is defined by LES as the
difference between the full field and the filtered
field. The principal quantitles for the small
scales are its kinetic energy gq°, dissipation
rate €, and the filter width A (their natural
length scale). Dimensional analysis suggests that,
if the Reynolds number is hfgh enough that therz is
no significant viscous dissipation of eddies of
size A, then these scales are related as shown in
Table 2 below.

Table 2
Properties of the Small-Scale Field

Dissipation € ~ q3/A
Energy Balance qzt = 2(2f - €)
3
Kinetic Ener 2 Q2—Q2 = < u,u,-u.u, >
By |4 = £ Sty

The principal objective of this section is to
determine the characteristics of the full field

from the filtered wvariables. Writing the first
line of Table 2 as the equality
o = c(2ae)?2/3 (3

and using the last line of Table 2 and Eqn. (2), we
find that the total kinetic energy can be estimated
from:
4
2 Qf
Qf - cl(ZAEf)

where ¢ 1s a constant of order unity to be deter-—
mined.

The scaling and defiltering methods proposed
above can be tested for the experiment on the
decay of homogeneous 1sotropic turbulence of Comte—
Bellot and Corrsin {(1971). An exact or direct
simulation of this flow at low turbulence Reynolds
nunbers might provide an even better test of the
defiltering process.

Figure 1 presents a test of the dissipation
scaling of Eq. (2). Fig. 2 tests the scaling for
the subgrid-scale energy presented in Eq. (3).
Fig. 3 tests the relationship for the total kinetic
energy given by Eq. (4); the filtered kinetic
energy is also shown, but this is known to be well
predicted from earlier studies. All of these tests

Table 1
Scaling Relationships for the Full and Filtered Fields

Full Field Filtered Field
Dissipati ~ QL e ~ QL
ssipation e~ @ £ Qf £
Energy Balance Q2 - 2¢ Q2 = - 2€

ot £,t £
Kinetic E 2:z¢ > R

= u,u =
netic Energy Q 194 Qf uiu:L
Dissipati € =<C2v8, 8 >le =2<2vs 5 . >
ssipation 137157 | F¢ 15713
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valtdate the scallng laws for this flow and the
constant in Eqs. (3) and {(4) 1is found to be ¢y =
1.04.,

All quantities were evaluated from the experi-
mental data, except for €_. This rate of transfer
has been calculated by ﬂ%s using the wvorticity
model (see Kwak et al. (1975) and Mansour et al.
(1978)). This model computes thls rate of transfer
well except for the first few time steps.

Similar tests show that these relationships
work equally well for the other Comte-Bellot and
Corrsin (1971} cases. There are insufficient data
to do these tests for other flows at the present
time.

ITI. Eddy-Viscosity Models

An  eddy-viscosity model should accurately
represent the effects of the subgrid-scale (or
small-scale) motions on the resolvable flow
field. There are two distinct components of the
small scales in the decay of turbulence: a compo-
nent that is correlated wirh the large scales and
can be considered as resulting from energy traans-—
ferred from the large scales, and a cowponent that
is the decaying remnant of the part of the initial
small-scale field that is not correlated with the
large—scale field..

In order to model the correlated component of
the small scales, we shall {nvoke “production
equals dissipation.” We can then relate it to the
current rate of energy transfer ef.

2/3

= CZ(ZefA) (3

2

95

This component will be analyzed 1n greater depth in

Section IV, for now we note that ¢, = .52, which
is exactly half of ¢q-.

An energy balance Indicates that the energy in
the uncorrelated component is, from Egqs. (3) and

{57,

/3 /3

2 2 2

q; = cl(ZEA) - cz(ZafA) {6)
We expect that these twe components will

affect the large—scale motfons differently and

therefore propose the "two—component” model:

v A+ ciin (7)

T Celf
This model can be reduced to one involvipg only
q by use of the relations derived in Section
Ig. In particular, qq can he approximated by

- 1 (8)
279 qi/qi

Finally, we need a way to compute qi . This
can be done from relationships already given and
leads to a cubic equation for v,.. We shall not
glve the result here, as a better approach will be
given in Section IV.

For purposes of testing the concept, we also

ca%culgte the e%ﬁy viscosity directly by computing

Qf, 9f, and qj directly from the experimental
data.

$imple Models

The two-component eddy-viscosity model differs
from the Smagorinsky model. However, Kwak et al.
(1975) and Shaanan et al. (1975) successfully simu-
lated the (filtered) decay of turbulence using the
Smagorinsky model, so we shall look for conditions
that reduce the two-component model to the Smagor-
insky model.

The correlated SGS component (qf) 1s expec—
ted to interact more strongly with the large scales
than does the uncorrelated component, so we expect
that ¢p >> c;. Then unless q; 1s much larger
than Qs Eq. (7) reduces to a simple kinetic
energy (TKE) model.

Vp = ¢ qu (%)

Moreover, 1if the filter width A 1is small,
i.e., there are enough computational points such
that A << L, the uncorrelated component should be
relatively small and can be neglected, and Eq. (7)
again reduces to Eq. (9). This should also hold at
long times in the decay of turbulence.

The Smagerinsky and vorticity models can be
derived from the TKE model. Ian particular, using
Eq. (5) and the last line in Table 1 and neglecting
the spatlal variation of vg, Eq. {9) can be re—
duced to

= 1/2
VT = ijsij > (10)

If we assume that the vorticity scales 1like the
strain rate, we ohtain the vorticity model.
2 —= 1/2
v.ooo= A < w, > 11
T (e, Caguy > ab

2 -
{(c A) < 28
S

Congtants

Since we cannot simulate turbulent flows at
high Reynolds numbers without modeling, the exper-
tment of Comte-Bellot and Corrsin (1971} at

R, = 70 was simulated with the vorticity model
with ¢, = 0.213, 1the2 value for which the filtered
kinetic energy, 7 Q% 1s well represented {sece
Kwak et al., 1975, and Mansour et al., 1978). The
computation was carried out on a 16 mesh using a
pseudospectral program provided by Dr. Parviz Moin.

The excellent agreement between the flltered
experimental decay and the computational results
means that the constant in the eddy viscosity 1s
accurgte. From the eddy viscosity, the constant(s)
of each model can be determined; these values are
presented in Table 3. For the simple models the
constants were evaluated from the simulated results
at the last time step, U_t/M = 98. For the two-
component model, the constants were evaluated by a
least—squares regression of the experimental and
simulated results.

The constants of the simple models agree with
previously reported values. Lilly (1967) derived
the Smagorinsky model under the assumption that
there is an inertial subrange, and found a slightly
smaller constant (cs = 0.17), probably because
the Xolmogorov spectrum overestimates the small-

scale energy at low Reynolds numbers. In fact,
Lilly's analysis gives
2/3
2 _ 2/3.4
9 = 4,5 e [ﬂ) (12)
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Table 3
Model Constants

Model of the Eddy Viscosity Constant
Two—-component chfA + ciqiﬂ e, = 0.107
ey = 0.011
TKE cqqfﬁ Cq = 0.126
Smagorinsky (csﬂ)2 < zgijgij >1/2 e, 0.197
Vorticity (ch)z < Eiai >l/2 e, = 0.213

2
which overestimates q by 25% for the Comte—

Bellot and Corrsin (197{) flow. Moln et al. (1979)
gave a model based on a Kolmogorov energy spectrum
{(inertial subrange) and a Gaussian filter. Their
results overestimate the energy of the small scales
of the Comte-Bellot and Corrsin (1971) experiment
by 47%. If these differences are taken into ac-
count, the constants presented in Table 3 agree
with these previous predictions.

These results apply only to high Reynolds num—
ber, which means R, > 40. McMillan and Ferziger
(1979} have given a &ow R, correction.

Deardorff (1970) and Schumann (1975) have
simulated channel flow and found a Smagorinsky con-
stant of 0.1 was required. The causes of this
small constant are not well understood; neverthe—
less, we can offer a partial explanation.

#1f the initial swmall-scale energy has been
dissipated, the two-component model reduces to the
TKE model with a smaller censtant than that of the
TKE model given in Table 3. The difference is not
a 50% reduction of the S8magorinsky constant, but
this explains part of the difference.

® There #s evidence that the effect of mean
shear on turbulence Is to decrease the net rate of
energy transfer to small scales (see McMillan,
Ferziger, and Rogallo (1980)), and this could
explain the smaller constant.

Decay of the Eddy Viscosity

Figure 4 presents the eddy-viscosity history
for the decay of turbulence at R, = 70. The two-
component and TKE models have been evaluated from
experimental data, while the dissipation, Smagor-
insky, and vorticity models have been evaluated
using LES with the vorticity model as basic
model. All wvalues of the eddy viscosity are nor-
malized with respect to the value at the last time
step.

All models yield sim}lar decay of the eddy
viscosity because the 16 computational box is
sufficient for & << L, which iIs a condition for
the validity of the simple models. The differences
observed in the first time steps are mainly due to
the decay of the uncorrelated SGS componrent, which
is treated only by the two-component model. .

Implications

The analysis of the eddy-viscosity models

leads to the following conclusions:

® The eddy viscosity model should consider both
components of the small-scale metions: the compo-
nent corelated with the large scales, q., and the
uncorrelated component; q;- This leads to the
two—component eddy-viscosity model.

® T1f A <KL, the TKE, dissipation, Smagorinsky,
and vorticity models are reasonable approximations
to the eddy viscosity in the simulation of the
decay of turbulence.

® Previous workers assumed that the proper SGS
velocity scale to be used Iin the model! is q and
that q ~ |S|a. In our vlew, both of these as-
sumptions are incorrect but the resulting model is
reasonable. One_should use qp as the velocity
scale and 9 ~ sla as a valid approximation.

IV. Filtered Small-Scale Motions

Since SGS models must be based on the resolved
varlables, it 1s reasonable to expect that the com-
ponent of the small-scale motions which 1s related
to the transfer of energy from the large scales,
i.e., the correlated component, can be well-
estimated from a knowledge of the large-scale
motions. Moreover, we expect this component to be
related to the gsmall scales of the resolved flow
field. A natural definition of the small-scale
component of the resclved field 1s the difference
between the flltered field (which 1s computed in
LES) and the twice-filtered field (which can be
obtained by filtering). Note that, since the
small-scale field is given by

uw = u-u {13)

we have, by filtering,
o= w-u (14)
so that u - u 1s a reasonable estimate of the
filtered SGS veloclty, and the energy in the
correlated 5G5S component can be estimated from
R —EE > (15)
b 1% %Yy
Then we can also evaluate the two—component and the
TKE models from resclvable varlables directly.
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Test of the Models

The two—component, TKE, Smagorinsky, vortic-
ity, and dissipation models were applied to the
simulation of the decay of homogeneous I1sotropic
turbulence at R, = 70. No significant differ-
ences are observed between the eddy viscosity
models based on the filtered small-scale motions
and the Smagorinsky, vorticity, and dissipation
models. These results Indicate that all these
eddy-viscosity models model the effects of the
small-scale motions on the large-scale variables in
the decay of turbulence reasonably well.

Another Small-Length Scale

For flows 1n which the spectrum is different
from the spectra obtalned in the decay of homogen-—
eous turbulence, it may be desirable to have a
model which does not explicitly use the filter
width 4. Transition and relaminarizing flows may
be examples of this. We shall develop such a model
using the ideas given above. Cain (1980) suggested
that a combination of the TKE and Smagorinsky mod-
els could provide this. Combining these models, we
can obtain

- 95 - ma -1/2
vp = 0.41 < EIRT VR TI T > < ZEijSij > (16)
This model 1s well behaved at a wall and should
also behave well in a shear flow, according to

Cain. This model is also dissipative.

A Model of the Reynolds Stresses

It may be possible to model the Reynolds
stregsses directly in terms of the small-scale com-
ponent of the resoclvable field. Such a model of
the Reynolds stresses is

Ty o~ wguy - uuy - ¥ @ - G &5 an

This wmodel does not require the principal axes of
the Reynolds stresses be aligned with the principal
axes of the stress tensor Sij f

Tests of thls model by McMillan, Ferziger, and
Rogalleo indicate that this model correlates with
the exact S5GS Reynolds stresses better than the
Smagorinsky model for decaying isotropic turbu-
lence. More importantly, while the Smagorinsky
model loses its validity in shear flows, this model
{s equally good In shear flow as in 1isotroplc tur-

bulence. It thus appears that this model is very
promising, Note that 1t deoes not require a length
scale.

However, the model has a serious flaw; 1t is
not dissipative. We are therefore using a linear
combination of this model and an eddy-viscosity
model. A linear combination of this model and the
one glven in Section D may be even better.

Exact tests using data provided by McMillan,
Ferziger, and Rogallo (1980) were performed for
homogeneous isotropic turbulence at R, = 38 and
for, one case of sheared homogeneous turbulence;
see McMillan, Ferziger and Rogalle (1980) for
further details. Tables 4 and 5 show the corre-
lation coefficlents between the exact SG5 Reynolds
stresses and the predictions of the Smagorinsky
model, the model represented by Eq. (17), and a
linear combination of both models. The combination
is expected to have the best properties of both
models.

Table 4

Average Correlation Coefficlents in Homogeneous,
Isotropic Turbulence at Ry = 38 and Ragg = 180

Tensor Vector Scalar
Model Level Level Level
Smagorinsky model W24 .20 .30
New Model Eqn. (17) .80 71 50
Combined model .83 74 60
Table 5

Average Correlation Coefficients in Homogeneous
Turbulence in the Presence of Mean Shear
at Rgeo = 208

Tensor Vector Scalar

Model Level Level Level
Smagorinsky model .05 .0 .05
New Model Eq. (17) .80 .75 .58
Combined model .80 .75 .58

A New Dissipative Model

The poor behavior of the Smagorinsky model in
shear flows prompted us to search for other dissi-
pative models with better properties. We took some
guidance form the equations describing the SGS Rey—
nolds stresses, In particular, one can expect the
following model to be dissipative:

2~ - 1l — -
Ty~ luy w3 e vy
Tests of the kind described above show that this
model 1is only slightly inferior to the Smagorinsky
model for iseotropic turbulence but quite superior
to 1t in sheared turbulence. We are therefore
testing it as a candldate model. A combination of
this model with Eq. (17) is also a strong candidate
for a model with all of the desired properties.

Yy (18

V. Anisotropic Grids

Inertia Tensor Models

In the large eddy simulation of inhomogeneous
shear flows, especially those in which there 1is a
solid boundary, it is necessary to ugse filters and
computational grids whose widths are different in
each directlon. We must expect that the eddy vis-
coslty will no longer be a scalar; it can become a
second~ or fourth-rank tensor. Furthermofe, it is
not even c¢lear which length scale should be used in
an eddy viscosity model.

Most of the previous work with anisotropic
meshes used the Smagorinsky model with a scalar
eddy viscosity. The length scale in the model was
based on the simplest scalar property of a paral-
lelepiped-—the volume;

1/3
A (Alazéa) (19)
This approach was first used by Deardorff (1970)
and has been popular since.
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To make a tensor eddy viscosity, we must find
a tensor related to the geometry of a parallelepi-
ped. The simplest cheolce 1s the moment of Inertia

tensor:
1
I, - V./; Xy g & (20)

For a rectangular parallelepiped whose axes are
aligned with the coordinate system, this becomes:

A 0 0
2 |1 2
Iij = 5 0 AZ 02 (21)
0 0 A3

i.e., the tensor Is on principal axes in this coor-
dinate system.

This tensor can be decomposed 1inte an iso-
tropic component and a trace—free component that
contains the anilsoctropy:

~

= + - =
Iij mij (Iij Idij) IGU + Iij (22)
where
1 1,2 2 2
I = 3L, = 3 (8] + b, + A3) 23)

A nmodel for (which has no trace) can be
censtructed by creagin the tensors that can be

created from I8, 5 I,., IS], and §_ _:
ij ij (24)
Tij = clIISISij
J— — — 1 —
toeolSh oS * Tadier ~ 3 T b
ISl = _1 n
teg T T TSk T T Tadlme S by

We have chosen not to use tensor products involving

more than once, but these could be added
la%ér if it appears that they are needed. We have
alse used only terms which reduce to the Smagorin—
sky model when the filter 1s isotropic Note that
we have used rather than the two are
equivalent, and éhis choice simpf&%ies the equa-
tions.

Scalar Eddy Viscosity

The first term in the Eq. {23} is just the
usual Smagorinsky medel with the length scale:
1/2
2 2 2
A1+|‘_\.2+£s3

b = —y {25)

To test whether this length scale 1s superior to
the one given by Eq. (1%9), we have used the data of

McMillan and Ferziger (1978). They computed an
“eddy viscosity” by dividing each eomponent T

by the corresponding component, This is Jot

an eddy viscosity tensor, but 1t %oes provide an

estimate of the relative importance of the iso-

tropic and anisotropic parts of the eddy viscosity;
there are no data available at present from which
the eddy viscosity tensor can be constructed. The
data do show, however, that the isotropic component
of the eddy viscosity is much the most Iimportant,
and they are sufficient to test whether Eq. (19} or
Eq. (24) 18 a better choice. To do this, we have
taken an average scalar eddy viscosity as the
average of the values presented by McMillan and

Ferziger (1978) and computed the “"constant” that
each of the two models would gilve.

The results are shown 1in Table 6 for several
different anigotroplc filters; the last line 1s the
result for a case of strained homogeneous turbu-
lence. It is clear from the table that, although
it is not perfect, Eq. (24) is definitely superior
to Eq. (19).

Much more remains to be done in this garea.
The anlsotroplc component of the eddy viscosity
tensor needs to be computed (McMillan and Ferziger
intend to do this) and compared with the models.

Table 6

Constants for the Smagorinsky Model for Anisotropic
Grid Using Two Different TLength Scales

Filter (A A WA ) ey, for ¢y, for
(relative) Eg. (19) Eq. (24)
2,2,2 152 152
4,1,1 +292 .190
6,1,1 .52 179
6,6,1 .297 -199
6,6,6 .182 .182
2.8,1.4,2 .160 .150

VIi. Conclusiens

1. The filtered flow field contains enough infor-
mation to determine some of the characteristic
scales of the full flow field, at least for the
flows considered.

2. The small scale kinetic energy can be decom—
posed into two components, one correlated with the
resolved field and one uncorrelated. While both
components are significant parts of the total
energy and dissipation, only the first component
normally makes a significant contribution to the
eddy viscosity.

3. The ‘"production equals dissipation” argument
does not hold in the decay of turbulence, because
it disregards the decaying initial small scale
motion (the uncorrelated component}.

4, Previgus authors have wused the total SGS
energy q and q ~ |8|lA as rthe basis for the
velocity scale 1n their SGS models. Nelther of
these assumptions 1s correct, but the conpensating
errors make the resulting model reasonable.

5. We have given a new eddy-viscosity model
independent of the filter width (Eq. (16)) This
model may be useful in transitional flows.

6. A new model of the Reynolds stresses which is
not of the eddy-viscosity type (Bg. (17)) has been
suggested and appears to be promising, especially
when combined with an eddy viscosity model.

7. A new model which has better dissipating
properties than the Smagorinsky model has been
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suggested, and the combination of this model with
the model of Eq. (17) appears to offer the poten-
tial for substantial improvement in large—eddy
simulation techniques.

8. A new length gsecale for use in eddy viscosity
models with anilsotropic filters has been proposed
and appears to be superlor to the model which has
been used heretofore.

Acknowledgments

The work described in this report was done
under Grant NCC-2-15, sponsored by NASA-Ames Re-
search Center. The authors also wish to acknow
ledge the substantial contributions to this work
made by ©O. J. McMillan, Alan Cain, M. Rubesin,
Robert Rogallo, P. Moin, and J. Kim.

Appendix A
Filtering Process

An approach to LES that has been widely used
to define the large-scale motions represented by
the filtered flow field 1is computed, while the
small-scale motions are modeled. This method is
currently used by the Stanford and Queen Mary
College groups and stated by Ferziger and Leslie
(1979).

The filtering process is defined as:
a(x) = f u(x') 6(x',x) dx'

where u 1is the velocity of the actual flow fleld,
u is the velocity of the filtered flow field, and

G is the filter function, usually taken to be a
Gaussfan.

The Gaussian filter is defined as:

(W ) oo [-sawy*n]

where A Is the filter width. The filtered and
unfiltered energy spectra are related by

Ef(k) = E(k) exp [}kznzllé]

The Gaussian filter reduces the levels of the
energy at smaller wave numbers (large-scale mo-
tions) and leaves almost no energy at the highest
wave numbers (small-scale motions).

G(x',x)

The energy spectrum of the actual flow fileld
cannot be obtained from the energy spectrum of the
filtered flow field because numerical approxima-
tiong produce large errors at high wave numbers and
no information is available at wave numbers above

LT

Appendix B

Equations for Homogeneous Isotropic Turbulence

Complete flow field:

Filtered flow field:

uj“‘1 = q
" + G-(u ~u ) = -P -1 4 2v8
i: j iaj j:i i ij'j
where
- P 11— -
P = L 4= - Z
P21 kk
T Ry T %R
Rij = uiu3 + u;ﬁj + ﬁiua = + ojuy - Hiﬁj

Eddy viscosity modeling:

Tij = - ZvTSij
The kinetic energy equation at high Reynolds number
(vT >> v) s

) ol = = -
e’y < 15137 5T %

The dynamical system of equations of the fil-
tered flow fleld (see Moim et al, 1978) can be
solved once the model of the eddy viscosity (or
Reynolds stresses) is formulated. The boundary
conditions are periodic, and the initial conditions
are formulated according to Kwak et al. (1973).
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Fig. 1. Test of the dissipation scaling.
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The exper-
imental data are those of Comte-Bellot and
Corrsin (1971) with L, = 10 m/sec and M =
0.0508 m. The filter used was a Gaussian,
with A = 0.03m, and €f was obtained by
large-eddy simulation using the vorticity

model with ¢y = 0.213 (cf. Mansour et al.
(1977)).
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Fig. 3. Decay of turbulence for the flow of Comte-

Bellot and Corrsin (1971) with U, =10
m/sec and M = 0.0508 m.
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The parameters are
the same as were used in Fig. 1.
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Fig. 4. Time history of the eddy viscosity for the
flow of Comte-Bellot and Corrsin (1971) with

U, = 10 m/sec

and M = 0.0508 m.



