
Improved Subgrid Scale Models 
for Large Eddy Simulation . J. Bard'lna, J,- H. Ferziger 
W. C. Reynolds, Stanford 
University, Stanford, Ga. 

(s 

and 

AlAA 13th 
FLUID & PLASMA DYNAMICS 

CONFERENCE 
July 14-16, 1980/Snowmass, Colorado 

For permission to copy or republish, contact the American Institute 01 Aeronautics and Astronaut icr l290 Avenun of the Americas. New York, N.Y. 10019 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

K
L

A
H

O
M

A
 o

n 
O

ct
ob

er
 2

0,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.1
98

0-
13

57
 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.1980-1357&domain=pdf&date_stamp=2012-08-17


IMPROVED SUBGRID-SCALE MODELS FOR LARGE-EDDY SIMULATION 
Jorge Rardina, Joel 11. Ferziger , and W. C. Reynolds 

Thermosciences Division 
Department of Mechanical Engineering 

Stanford Univeriity 
Stanford, California 94305 

Abs tract __ 
Models for subgrid-scale turbulence are ana- 

lyzed. The analysis indicates that there is enough 
information in the resolved scales to allow some of 
the characteristics of the complete flow field to 
be determined. The kinetic energy of the small- 
scale motions can be decomposed into two parts. 
One is due to energy transfer from the large scales 
and is correlated with them; the other is uncorre- 
lated. This leads to a two-component eddy- 
viscosity model. The '"production equals disslpa- 
tion" argument does not hold for the small scales  
in the decay of turbulence because it does not 
account for the uncorrelated component. The two- 
component model can be reduced to the single-  
component models that have been used previously, 
but it shows some of the flaws in arguments made 
earlier and explains some of the discrepancies that 
have bcen observed. 

The exchange between the large and small 
scales takes place mainly between the smallest 
scales of the former and the largest scales of the 
latter. This argument is the basis of a new model 
which preliminary teSts show to be superior to the 
Smagorinsky model that has been used heretofore. 
Finally, a new length scale for use with anisa- 
tropic filters is proposed. 

\_/ 
I. Introduction 

Turbulent flows contain structures of various 
length s c a l e s .  The large-scale motions contain 
most of the energy, are anisotropic, and do most of 
the transporting, while the small-scale motions are 
mainly dissipative. Present computer capabilities 
do not allow computation of all scales of motion, 
except for very low Reynolds numbers. Large-eddy 
simulation (LES) attempts to compute the large 
scales  and model the small ones (the so-called 
subgrid scale  or SGS motions) at higher Reynolds 
numbers. 

The simplest SGS models assume that the SGS 
Reynolds stregs -tensor is proportional to the 
stress tensor, S , of the large-scale field. 
The proportionalit$j factor is the SGS eddy viscos- 
ity v . In particular, the Smagorinsky model 
(SmagorTnsky, 1963)2 paSsumes the eddy viscosity is 
proportional to A I S 1  while, the vorticity model 
assumes it proportional to A I d .  These models 
are currently used by the Stanford and Queen Mary 
College groups, as stated by Ferziger and Leslie 
(1979). Some unresolved issues on SGS modeling 
have been presented by Herring (1977) and/or 
Ferziger and Leslie (1979). The chief of these 
follow. 

''Production Equals Dissipation" 

This argument assumes that the rate of trans- 
fer of energy from the resolved motions to the 

W small  scales  is equal to the rate of dissipation in 
the small scales and can be used to derive the 
above models. 

*Member, A I M .  
Copyright @ American Inslituleof Aerona~li(.5 m i l  

Astmnaatier, h e . .  1980. All rightsreserved. 

This argument Is not valid in the decay of 
turbulence, because it neglects the decay of the 
energy initially in the small scales. However, the 
Smagorinsky and vortlcity models have been success- 
fully used by Kwak et al. (1975) and Shaanan et al. 
(1975), among others, to simulate the (filtered) 
decay of homogeneous isotropic tiirbulence experi- 
ments of Comte-Rellot and Corrsin (1971). 

Velacity Scale 

Most eddy-viscosity models assume UT - qA 
and thus require a velocity scale q of the small- 
scale motions. - The Smagorinsky model further 
assumes q - ( A S ) .  McMillan dnd Ferziger (1979) 
found that this relation is not very accurate. On 
the other hand, the model has been used success- 
fully. 

Smagorinsky Constant 

The Constant in Smagorinsky's eddy viscosity 
model has been determined by Lilly's (1967) theo- 
retical argument a s  - 0 . 2 .  Similar values were 
found by Clark et al. (1977) through a "complete" 
simulation of a low Reynolds number flow, and by 
Kwak et al. (1977) and Shaanan et al. (1977) by 
fitting the (filtered) experimental decay of tu=- 
bulence. On the other hand, Deardorff (1970) and 
Schumann (1975) found that this value of the param- 
eter damped too much energy in the simulation of a 
channel flow. Their empirical results led to a 
constant of 0.1 for the Smagorinsky model. 

&filtering 

An approach to LES which defines the large 
scales by spatial filtering is presented in Appen- 
dix A .  This approach is currently used by the 
Stanford, NASA-Ames, and Queen Mary College groups. 
A "defiltering" process which could produce the 
characteristics of the flow from LES has not yet 
been presented. Such a process would improve our 
understanding of SGS models and would also allow 
comparison with actual experimental results. 

The analysis presented below shed some light 
on these issues. In particular, it does not re- 
quire the "production equals dissipation'' argument; 
it allows estimation of some of the characteristic 
scales of the flow field from resolved variables 
and leads to a "two-component" eddy viscosity model 
which simplifies to the eddy-viscosity models when 

A << L; Lt explains the poor correlation between 
q and IASI and explains Some of the difference 
between the values of the Smagorinsky constant 
found by various authors. We shall also discuss 
length scales f o r  use with anisotropic grids and 
suggest new subgrid-scale models. The main 
objective of this work is to reach a better under- 
standing of the simplest SGS models in order to 
derive better models and thereby to improve the 
simulation of different turbulent flows. 

The equations describing the complete flow 
field (u) and resolvable or filtered flow field 
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- 
( u )  are presented in Appendix B of this work. A 

simple way to close the filtered equations is 
through use of an eddy viscosity model. A success- 
ful eddy-Viscosity model should accurately repre- 
sent the effects of the small scales in terms of 
the resolved variables. We shall therefore try to 
defilter the resolved field first and to model the 
eddy viscosity afterwards. 

The analysis is compared with the turbulence 
decay experiment of Comte-Bellot and Corrsin 
(1971); in particular, we use the experimental case 
with U_ = 10 m/s, M = 5 . 0 8  cm, and R 70. 
The constants are suitable for this flow but apply 
to their otheq cases with only slightly less accur- 
acy. 

A 

11. Defiltering 

The principal quantities in the decay of tur- 
bulence are the turbulence kinetic energy, the dis- 
sipation rate, and a suitable length scale; this is 
the ease for both the full and filtered fields. 
Dimensional analysis for the full and filtered 
fields at high Reynolds number leads to the rela- 
tionships presented in Table 1 below. Recall that 
the "dissipation" in the filtered field is actually 
the energy transferred to the small-scale field. 

A s  Lilly (1967) suggested, L is the average 
length scale of the energy-containing eddies. This 
length scale makes the normalized large-scale spec- 
trum independent of Reynolds number ( s e e  Tennekes 
and Lumley, 1978, p. 267). 

The filtered field contains the same large 
eddies as the full field, so we expect: 

Dissipation 

Energy Balance 

Kinetic Energy 

Therefore, from the first line of Table 1, we also 
expect 

(2 ) 
213 2 2 

E - Ef Q IQf 

This last equation tells us that, since filtering 
re uces2the kinetic energy of the flow ( i . e . *  
Qf < Q ), the rate of energy transfer from the 
resolved scales to the small scales, sf, is 
smaller than the total rate of dissipation, 
E (i.e., E < E ) .  The difference is due to the 

decay of the energy which was initially in the 
small scales and is frequently quite large. One 
cannot apply the "production equals dissipation" 
argument to the small scales if this is the case. 

4 

f 

3 
E - q  I d  

q > t  
= 2 ( E f  - E) 

-~ 2 E Q"Q: = < U , U , - - U , I I ,  > 

The small-scale field is defined by LES as the 
difference between the full field and the filtered 
field. The principal quantities f o r  the small 
scales are its kinetic energy q2, dissipation 
rate E, and the filter width A (their natural 
length scale). Dimenslonal analysis suggests that, 
i f  the Reynolds nitmber is hfg'l enough that there is 
no significant viscous dissipation of eddies of 
size A ,  then these scales are related as shown in 
Table 2 below. 

Table 2 

Properties of the Small-Scale Field 

The principal objective of this section is to 
determine the characteristics of the full field 
from the filtered variables. Writing the first 
line of Table 2 as the equality 

and using the last line of Table 2 and Eqn. (2), we 
find that the total kinetic energy can be estimated 
from: 

where c is a constant of order unity to be deter- 
mined. 

The scaling and defiltering methods proposed 
above can be tested for the experiment on the 
decay of homogeneous isotropic turbulence of Comte- 
Bellot and Corrsin (1971). An exact o r  direct 
simulation of this flow at low turbulence Reynolds 
numbers might provide an even better test of the 
defiltering process. 

Figure 1 presents a test of the dissipation 
scaling of Eq. ( 2 ) .  Fig. 2 tests the scaling for 
the subgrid-scale energy presented in Eq. ( 3 ) .  
Fig. 3 tests the relationship for the total kinetic 
energy given by Eq. ( 4 ) ;  the filtered kinetic 
energy is also shown, but this is known to be well 
predicted from earlier studies. All of these tests 

Table 1 
Scaling Relationships f o r  the Full and Filtered Fields 

DiSSipatio" 

Energy Balance 

Dissipation L 

Filtered Field 
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validate the scaling laws for this flow and the 
constant in Eqs. ( 3 )  and ( 4 )  is found to be c1 = 
1.04. 

v All quantities were evaluated from the experi- 
mental data, except for This rate of transfer 
has been calculated by %E', using the vorticity 
model ( s e e  Kwak et al. (1975) and Mansour et al. 
(1978)). This model computes this rate of transfer 
well except for the first few time steps. 

Similar tests show that these relationships 
work equally well for the other Comte-Bellot and 
Corrsin (1971) cases.  There are insufficient data 
to do these tests for other flows at the present 
time. 

111. Eddy-Viscosity Models 

An eddy-viscosity model should accurately 
represent the effects of the subgrid-scale (or 
small-scale) motions on the resolvable flow 
field. There are two distinct components of the 
small scales in the decay of turbulence: a compo- 
nent that is correlated with the large scales and 
can be considered as resulting from energy trans- 
ferred from the large scales, and a component that 
is the decaying remnant of the part of the initial 
small-scale field that is not correlated with the 
large-scale field.. 

In order to model the correlated component of 
the small scales, we shell invoke "production 
equals dissipation." We can then relate it to the 
current rate of energy transfer E<. 

This component will be analyzed in greater depth in 
Section Iv, for now we note that c2 = .52, which 
is exactly half of cl. 

An energy balance indicates that the energy in 
the uncorrelated component is, from Eqs. ( 3 )  and 
(5), 

2f3  (6) qi = cl(2€A) - c2(2cfA) 2 2 I3 

We expect that these two components will 
affect the large-scale motions differently and 
therefore propose the "two-component" model: 

This model can be reduced to one involving only 
q by use of the relations derived in 'Section 
If. In particular, qi can be approximated by 

Finally, we need a way to compute qf . This 
can be done from relationships already given and 
leads to a cubic equation for vT. We shall not 
g ive  the result here, as a better approach will be 
given in Section IV. 

For purposes of testing the concept, we also 
ca cul te the e dy viscosity directly by computing 

i-- Qf, qf, and qi directly from the experimental 
data. 

i ?  4 

Simple Models 

The two-component eddy-viscosity model differs 
from the Smagorinsky model. However, Kwak et al. 
(1975) and Shaanan et al. (1975) successfully simu- 
lated the (filtered) decay of turbulence using the 
Smagorinsky model, so we shall look for  conditions 
that reduce the two-component model to the Smagor- 
insky model. 

The correlated SGS component (qf) is expec- 
ted to interact more strongly with the large scales 
than does the uncorrelated component, so we expect 
that cf >> ci. Then unless qi is much larger 
than qf, Eq. (7) reduces to a simple kinetic 
energy (TKE) model. 

" = c q b  (9) T q f  
Moreover, if the filter width A is small, 

i.e., there are enough computational points such 
that A << L, the uncorrelated component should be 
relatively small and can be neglected, and Eq. (7) 
again reduces to Eq. (9). This should also hold at 
long times i n  the decay of turbulence. 

The Smagorinsky and vorticity models can be 
derived from the TKE model. In particular, using 
Eq. (5) and the last line in Table 1 and neglecting 
the spatial variation of UT, Eq. (9) can be re- 
duced to 

If we assume that the vorticity scales like the 
strain rate, we obtain the vorticity model. 

Constants 

Since we cannot simulate turbulent flows at 
high Reynolds numbers without modeling, the exper- 
iment of Comte-Bellot and Corrsin (1971) at 
R = 70 was simulated with the varticity model 

wikh cv = 0.213,  the value for Which the filtered 
kinetlc energy, Q:, is w d l  represented ( s e e  
Kwak et al., 1975, and Mansour et a 1978). the 
computation was carried out on a 16"'mesh using  a 
pseudospectral program provided by Dr. Parviz Moin. 

The excellent agreement between the filtered 
experimental decay and the computational results 
means that the constant in the eddy viscosity is 
accurate. From the eddy viscosity, the constant(s) 
of each model can be determined: these values are 
presented in Table 3 .  For the simple models the 
constants were evaluated from the simulated results 
at the last time step, U_t/M = 98. For the two- 
component model, the constants were evaluated by a 
least-squares regression of the experimental and 
simulated results. 

The constants of the simple models agree with 
previously reported values. Lilly (1967) derived 
the Smagorinsky model under the assumption that 
there is an inertial subrange, and found a slightly 
smaller Constant ( c ,  = 0.17), probably because 
the Kolmogorov spectrum overestimates the small- 
scale energy at low Reynolds numbers. In fact, 
Lillv's analysis aives 
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Table 3 
Model Constants 

/Model of the Eddy Viscosity 

Two-component 

I 
Smagorinsky 

vor tiCi ty 

which overestimates q2 by 25% for the Comte- 
Bellot and Corrsin (197f) flow. MOin et al. (1979) 
gave a model based on a Kolmogorov energy spectrum 
(inertial subrange) and a Gaussian filter. Their 
results overestimate the energy of the small scales 
of the Comte-Bellot and Corrsin (1971) experiment 
by 4 7 % .  If these differences are taken into ac- 
count, the constants presented in Table 3 agree 
with these previous predictions. 

These results apply only to high Reynolds num- 
ber, which means R 2 40. McMillan and Ferziger 
(1979) have given a iow RA correction. 

Deardorff (1970) and Schumann (1975) have 
simulated channel flow and found a Smagorinsky con- 
stant of 0.1 was required. The causes of this 
small constant are not well understood; neverthe- 
less, we can offer a partial explanation. 

*If the initial small-scale energy has been 
dissipated, the two-component model reduces to the 
TKE model with a smaller constant than that of the 
TKE model given in Table 3 .  The difference is not 
a 50% reduction of the Smagorinsky constant, but 
this explains part of the difference. 

*There is evidence that the effect of mean 
shear on turbulence is to decrease the net rate of 
energy transfer to small scales (see McMillan, 
Ferziger, and Rogallo (1980)), and this could 
explain the smaller constant. 

Decay of the Eddy Viscosity 

Figure 4 presents the eddy-viscosity history 
for the decay of turbulence at R 1 70. The two- 
component and TKE models have been evaluated from 
experimental data, while the dissipation, Smagor- 
insky, and vorticity models have been evaluated 
using LES with the vorticity model as basic 
model. All values of the eddy viscosity are nor- 
malized with respect to the value at the last time 
step. 

A 

All models yield sim lar decay of the eddy 
viscosity because the 16 computational box is 
sufflcient for A << L, which is a condition for 
the validity of the simple models. The differences 
observed in the first time steps are mainly due to 
the decay of the uncdrrelated SGS component, which 
is treated only by the two-component model.. 

3 

c q A + c q b  f f  i i  

constant cl 
J c = 0.197 

c = 0.213 
V 

Implications 

The analysis of the eddy-viscosity models 

leads to the following conclusions: 

The eddy viscosity model should consider both 
components o f  the small-scale motions: the compo- 
nent corelated with the large scales, qf, and the 
uncorrelated component, qi. This leads to the 
two-component eddy-viscosity model. 

If b << L, the TKE, dissipation, Smagorinsky, 
and vorticity models are reasonable approximations 
to the eddy viscosity in the simulation of t h e  
decay of turbulence. 

Previous workers assumed that the proper SGS 
velocity scale to be used in the model is q and 0 
that q - ISlA. In our view, both of these as- 
sumptions are incorrect but the resulting model is 
reasonable. One should use qf as the velocity 
scale and qf - l?lA as a valid approximation. 

IV. Filtered Small-scale Motions 

Since SGS models must be based on the resolved 
variables, it is reasonable to expect that the com- 
ponent of the small-scale motions which is related 
to the transfer of energy from the large scales, 
i . e . ,  the correlated component, can be well- 
estimated from a knowledge Of the large-scale 
motions. Moreover, we expect this component to be 
related to the small scales of the resolved flow 
field. A natural definition of the small-scale 
component of the resolved field is the difference 
between the filtered field (which is computed in 
LES) and the twice-filtered field (which can be 
obtained by filtering). Note that, s ince  the 
small-scale field is given by 

- 
" I  = u - "  (13) 

" 1  = u - "  (14) 

we have, by filtering, 
- - - -  

- - -  
80 that u - u is a reasonable estimate of the 
filtered SGS velocity, and the energy in the 
correlated SGS component can be estimated from 

Then we can also evaluate the two-component and the 
TKE models from resolvable variables directly. 
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Test of the Models 

Model 

Smagorinsky model 
New Model Eq. (17) 

Combined model 

The two-component, TKE, Smagorinsky, Vortic- 
ity, and dissipation models were applied to the 

W simulation of the decay of homogeneous isotropic 
turbulence at R = 70. No significant differ- 
ences are observed between the eddy viscosity 
models based on the filtered small-scale motions 
and the Smagorinsky, vorticity, and dissipation 
models. These results indicate that all these 
eddy-viscosity models model the effects of the 
small-scale motions on the large-scale variables in 
the decay of turbulence reasonably well. 

h 

Level Level Level 

.75 .58 

Another Small-Length Scale 

For flows in which the spectrum is different 
from the spectra obtained in the decay of homogen- 
eous turbulence, it may be desirable to have a 
model which does not explicitly use the filter 
width A .  Transition and relaminarizing flows may 
be examples of this. We shall develop such a model 
using the ideas given above. Cain (1980) suggested 
that a combination of the TKE and Smagorinsky mod- 
els could provide this. Combining these models, we 
can obtain _ _  
YT = 0.41 < UkUk - KkKk > < 2SijSij >-'" (16) 

This model is well behaved at a wall and should 
also behave well in a shear flow, according to 
Cain. This model is also dissipative. 

A Model of the Reynolds Stresses 

It may be possible to model the Reynolds 
stresses directly in terms of the small-scale com- 

\/ ponent of the resolvable field. Such a model of 
the Reynolds stresses is 

This model does not require the principal axe8 of 
the Reynolds stresses be aligned with the principal 
axes of the stress tensor S . 

iJ 
Tests of this model by McMillan, Ferziger, and 

Rogallo indicate that this model correlates with 
the exact SGS Reynolds stresses better than the 
Smagorinsky model for decaying isotropic turbu- 
lence. More importantly, while the Smagorinsky 
model loses its validity in shear flows, this model 
is equally good in shear flow as in isotropic t u -  
bulence. It thus appears that this model is very 
promising. Note that it does not require a length 
scale. 

However', the model has a serious flaw; it is 
not dissipative. We are therefore using a l inear 
combination of this model and an eddy-viscosity 
model. A linear combination of this model and the 
one given in Section D may be even better. 

Exact tests using data provided by McMillan, 
Ferziger, and Rogallo (1980) were performed for 
homogeneous isotropic turbulence at RA = 38 and 
for, one case of sheared homogeneous turbulence; 
see McMillan, Ferziger and Rogallo (1980) for 
further details. Tables 4 and 5 show the corre- 
lation coefficients between the exact SGS Reynolds 

'v' stresses and the predictions of the Smagorinsky 
model, the model represented by Eq. (17), and a 
linear combination of both iodels. The combination 
is expected to have the best properties of both 
models. 

Table 4 
Average Correlation Coefficients in Homogeneous, 
Isotropic Turbulence at RA = 38 and RSGS = 180 

Model 

Smagorinsky model 

New Model Eqn. (17) 

Combined model 

Level Level 

.80 .71 

.83 .74 .60 

Table 5 

Average Correlation Coefficients in Homogeneous 
Turbulence in the Presence of Mean Shear 

at RSGS = 208 

A New Dissipative Model 

The poor behavior of the Smagorinsky model in 
shear flows prompted us to search for other dissi- 
pative models with better properties. We took some 
guidance form the equations describing the SGS Rey- 
nolds stresses. In particular, one can expect the 
following model to be dissipative: 

Tests of the kind described above show that this 
model is only slightly inferior to the Smagorinsky 
model for isotropic turbulence but quite superior 
to it in sheared turbulence. We are therefore 
testing it as a candidate model. A combination of 
this model with Eq. (17) is also a strong candidate 
for a model with all of the desired properties. 

V. Anisotropic Grids 

Inertia Tensor Models 

In the large eddy simulation of inhomogeneous 
shear flows, especially those in which there is a 
solid boundary, it is necessary to use filters and 
computational grids whose widths are different in 
each direction. We must expect that the eddy vis- 
cosity will no longer be a scalar; it can become a 
second- or fourth-rank tensor. Furthermode, it is 
not even clear which length scale should be used in 
an eddy viscosity model. 

Moat of the previous work with anisotropic 
meshes used the Smagorinsky model with a scalar 
eddy viscosity. The length scale in the model was 
based on the simplest scalar property of a paral- 
lelepiped-the volume: 

This approach was first used by Deardorff (1970) 
and has been popular since. 
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To make a tensor eddy viscosity, we must find 
a tensor related to the geometry of a parallelepi- 
ped. The simplest choice is the moment of inertia 
tensor: 

I = q XiXj dv ( 2 0 )  il 
For a rectangular parallelepiped whose axes are 
aligned with the coordinate system, this becomes: 

i.e., the tensor is on principal axes in this coor- 
dinate system. 

This tensor can be decomposed into an iso- 
tropic component and a trace-free component that 
contains the anisotropy: 

I = 16ij + (Iij - ISij) = IS + I ( 2 2 )  
ij il i j  

where 

(23 )  
1 
3 kk = 1 2  (Al + A2 2 + A3) 2 I = - 1  

A model for T . ,  (which has no trace) can be 
constructed by cre8ing the tensors that can be 

Is], and S : created from Iaij, Iij, 
(24) i j  

i j  
T = clIISIS 
iJ 

We have chosen not to use tensor products involving 
S . more than once, but these could be added 
lahdr if it appears that they are needed. We have 
also used only terms which reduce to the Smagorin- 
sky model when the filter is isotxopic. Note that 
we have used Ii rather than I ' the two are 
equivalent, and Jhis choice simpl%'ies the equa- 
tions. 

Scalar Eddy Viscositx 

The first term in the Eq. ( 2 3 )  is just the 
usual Smagorinsky model with the length scale: 

To test whether this length scale is superior to 
the one given by Eq. (19), we have used the data of 
McMillan and Ferziger ( 1 9 7 8 ) .  They computed an 
"eddy viscosity" by dividing each-component, T 
by the corresponding component, Si . This isidit 
an eddy viscosity tensor, but it h o e s  provide an 
,estimate of the relative importance of the fso- 
tropic and anisotropic parts of the eddy viscosity; 
there are no data available at present from which 
the eddy viscosity tensor can be constructed. The 
data do show, however, that the isatropic component 
of the eddy viscosity is much the most important, 
and they are sufficient to test whether Eq. (19) or 
Eq. ( 2 4 )  is a better choice. To do this, we have 
taken an average scalar eddy viscosity as the 
average of the values presented by McMillan and 

Ferziger (1978) and computed the "constant" that 
each of the two models would give. 

The results are shown in Table 6 for several i/ 
different anieotropic filters; the last line is the 
result for a case of strained homogeneous turbu- 
lence. It is clear from the table that, although 
it is not perfect, Eq. (24) is definitely superior 
to Eq. (19). 

Much more remains to be done in this area. 
The anisotropic component of the eddy viscosity 
tensor needs to be computed (McMillan and Ferz ige r  
intend to do this) and compared with the models. 

Table 6 

Constants for the Smagorinsky Model for Anisotropic 
Grid Using Two Different Length Scales 

Filter (Al;;d2,A3) 
(relative) 

cl, for 

E q .  (19) 

.152 

.292 

.352 

.297 

.182 

,160 

C1' for 

Eq. (24) 

.199 

.150 

VI. Conclusions 

1. The filtered flow field contains enough infor- 
mation to determine some of the characteristic 
scales of the full flow field, at least f o r  the 
flows considered. 

2 .  The small scale kinetic energy can be decom- 
posed into two components, one correlated with the 
resolved field and one uncorrelated. While both 
components are significant parts of the total 
energy and dissipation, only the first component 
normally makes a significant contribution to the 
eddy viscosity. 

3 .  The "production equals dissipation'' argument 
does not hold in the decay of turbulence, because 
it disregards the decaying initial small scale 
motion (the uncorrelated component). 

4. P r e v i y  authors have used the total SGS 
energy q and 4 - IStA as the basis for the 
velocity scale in their SGS models. Neither of 
these assumptions is correct, but the conpensating 
errors make the resulting model reasonable. 

5 .  We have given a new eddy-viscosity model 
independent of the filter width (Eq. (16)) This 
model may be useful in transitional flows. 

6 .  A new model of the Reynolds stresses which is 
not of the eddy-viscosity type (Eq. (17)) has been 
suggested and appears to be promising, especially 
when combined with an eddy viscosity model. 

7 .  A new model which has better dissipating 
properties than the Smagorinsky model has been 
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suggested, and the combination of this model with 
the model of Eq. (17) appears to offer the poten- 
tial for substantial improvement in large-eddy 
simulation techniques. 

8 .  A new length scale for use in eddy viscosity 
models with anisotropic filters has been proposed 
and appears to be superior to the model which has 
been used heretofore. 
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Appendix A 
Filtering Process 

An approach to LES that has been widely used 
to define the large-scale motions represented by 
the filtered flow field is computed. while the 
small-scale motions are modeled. This method is 
currently used by the Stanford and Queen Mary 
College groups and stated by Ferziger and Leslie 
(1979). 

The filtering process is defined as: 

where u is the velocity of the actual flow field, 
is The velocity of the filtered flow field, and 

G is the filter function, usually taken to be a 
Gaussian. 

- u 

The Gaussian fiIter is defined as: 

where A is the filter width. The filtered and 
unfiltered energy spectra are related by 

Ef(k) = E(k) exp [-k2A2/12] 

The Gaussian filter reduces the levels of the 
energy at smaller wave numbers (large-scale mo- 
tions) and leaves almost no energy at the highest 
wave numbers (small-scale motions). 

The energy Spectrum of the actual flow field 
cannot be obtained from the energy spectrum of the 
filtered flow field because numerical approxima- 
tions produce large errors at high wave numbers and 
no information is available at wave numbers above 
nIA. 

Appendix B 

Equations for Homogeneous Isotropic Turbulence 

Complete flow field: 

- 0  
"f,i 

v 

Filtered flow field: 

where - - P 1 - -  1 
P 2 j j  3 kk 

P = - + - u u  - - R  

Eddy viscosity modeling: 

The kinetic energy equation at high Reynolds number 
(VT >> u) is: 

The dynamical system of equations of the fil- 
tered flow field ( s e e  Moin et al, 1978) can be 
solved once the model of the eddy viscosity (or 
Reynolds stresses) is formulated. The boundary 
conditions are periodic, and the initial conditions 
are formulated according to Kwak et al. (1975): 
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Pig. 1. T C S t  of t h e  d i s s i p a t i o n  s c a l i n g .  Thc cxpcr- 
imenta l  d a t a  a re  t h o s e  of Comte-Bellot and 
C o r r s i n  (1971.) w i t h  U_ = 10  mlsec and M = 
0.0508 m .  The f i l t e r  used was a Gauss ian ,  
w i t h  A = 0.03 m, and Ef  was obta incd  by 
large-eddy sirniilati.on u s i n g  t h e  v o r t i c i . t y  
model  w i t h  cv = 0.211 (cf. Mansour e t  a1. 
(1977) ) .  

.IO 

.c9 

.OB 

.07 

n 
0 

v) 
' .04 

.03 

.01 

i, 
Fig .  3. Decay of t u r b u l e n c e  f o r  t h c  f l o w  of Comte- 

B e l l o t  and Corrs in  (1971) w i t h  
mlsec and M = 0.0508 m.  

U, = 10 

1.1 

1.( 

I I 

40 50 G O  70 EO 90 100 &,L 

. - I 
Fig. 2 .  Tes t  of the  s c a l i n g  l a w  for  t h e  small-scale 

energy  g iven  i n  Tab le  2 .  The parameters are 
t h e  Same as were used i n  F ig .  1. 
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Fig .  4 .  Time h i s t o r y  o f  t h e  eddy v i s c o s i t y  f o r  t h e  
f l o w  of Comte-Bellot and C o r r s i n  (1971)  w i t h  
U, = 1 0  mlsec and M = 0.0508 m. 
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