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Discrete Time Series Analysis



Discrete Time (or Space) Series

e Consider uniformly spaced data in time (could be space).

e We will call this series discrete because there is a finite
number of data points, which represent a sample of the true
continuously-varying signal.
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Discrete Time (or Space) Series

to to+ At o+ 24t G+ 34t to+(N—1)At

t

N — total number of data points

to + kAt — k' data point (0 <k < N —1)

A(tx) = A(k) = A — notation for sampled series

T = NAt — total period of sampling @



Taylor's Frozen Turbulence Hypothesis

If the velocity of the air stream which carries
the eddies is very much greater than the turbu-
lent velocity, one may assume that the sequence
of changes in u at the fixed point are simply
due to the passage of an unchanging pattern of
turbulent motion over the point, i.e. one may
assume that

where x is measured at time t = 0 from the
fixed point where u is measured.
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Taylor's Frozen Turbulence Hypothesis

e As a result turbulence measurements that are made as a
function of time can be translated into a corresponding spatial
measurement.

e This hypothesis is useful for cases where turbulent eddies
evolve with a timescale longer than the time scale it takes the
eddy to be advected past the sensor.

0



Taylor's Frozen Turbulence Hypothesis

e Following Stull (1988), the substantial derivative is zero for
Taylor's Hypothesis

e Thus,
o6 _ % B 3( 8(
ot Yor 8y Yz
e If we assume that @ = 0 and write U = Vu? + 2, then
oC B oC
ot Uaxd

where x4 indicates along the direction of the wind.



Taylor's Frozen Turbulence Hypothesis

e We can also write Taylor's hypothesis in terms of wavenumber
k and frequency f:

f
E= L
U
where k = 27 /X and f = 27 /T for wavelength A and wave

period T'.
e [k has dimensions of radians per unit length.

e f has dimensions of radians per unit time.



Estimating Dissipation Rate

e Recall when we derived the turbulence kinetic energy balance
equation that dissipation was written as:
/ /
ou;, Qu;,

axj 8:Cj

€=V

e Assuming homogeneous isotropic turbulence, dissipation may
be estimated as:

/ 2
€= 151/(5;2‘;)

e We can invoke Taylor's frozen turbulence hypothesis to

rewrite as
1 ou'\?
=1v| —=—
‘ ( U ot )
where 9u’ /0t is approximated, for example, from @
measurements.
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Estimating Dissipation Rate

1 ou\?
— 150 ————
€ 51/< U 675)

e Remember that dissipation occurs at very small time and
space scales.

e Thus, our measurement probes must be small and sample at
high frequencies.

e Examples are sonic anemometers or hot-wire probes.
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Autocorrelation

e Consider the discrete autocorrelation, which measures the
persistence of a wave within the duration of a discrete series.

e Existence of persistent features may point to particular
physical phenomena (e.g., eddy).

N—j—1 o o
[(Ak = Ak) (Artj — Akj)]
k=0
RAA(L) = N—j—1 1/2 N—j-1 1/2
[ Z (Ar — Ak)2 Z (Aprj — Ak+])2
k=0 k=0

where the lag L = jAt
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Autocorrelation

e Note that we use two different means depending on where we
are in the time series

N—j—1 | Moot
Z A Ak =y D Akt
k=0 k=0
e If we assume that the data is stationary (homogeneous in
space):
A’ Al
Raa(L) ~ ﬁ
0%

e As lag increases, we use less of the series and so the statistical
significance of R4 decreases.

e Thus, we compute R4 for the range of lags (j = 0 to

j=NJ2). @
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Autocorrelation

p(s)
N
Practically a statistical significance
level is usually chosen

y

n Integral s
time scale

e Autocorrelation can aid in showing the persistence of an eddy

e Integral scale ¢, = f0°° Raa(L)dL is a measure of the area
over which a signal is correlated with itself (indicates largest
eddies in the flow).

e Kolmogorov microscale is found by fitting a parabola to the
near-origin points (see Tennekes and Lumley) and locating the
x-intercept. This measures the smallest eddies that are @
dynamically significant in the flow.
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Discrete Fourier Transform

There are several ways to describe the frequency of our series.
en

number of cycles per time period (from 1 to N — 1)
cycles per second: n/T = n/(NAt)

radians per second: 27mn/T = 27n/(NAt)

o N =

o f

Frequency values mean different things

e n =0 — mean value

e n =1 — fundamental frequency (one wave fills T°)

e n. > 1 — harmonics of the fundamental frequency
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Discrete Fourier Transform

e We can represent our series as the superposition of sine and
cosine waves via Euler's formula [exp(iz) = cos(x) + isin(z)]

N-1

Ay, = Z FA(n)eiQﬂ’nk/N
k=0

where F4(n) is the discrete Fourier transform.

e F4(n) is a complex number where the real part is the
amplitude of the cosine waves and the imaginary part is the
amplitude of the sine waves.

e F4(n) is a function of frequency because waves of different
frequencies have to be multiplied by different amplitudes to
reconstruct the signal.

0
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Discrete Fourier Transform

e |f we have the discrete series, we can solve for the Fourier
coefficients

N-1 A )
Fa(n) = Z (]\/’f) e—i2mnk/N
k=0

e This is the forward transform, which converts from physical to
phase space.
e Another name for this expression is Fourier decomposition.

0
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Discrete Energy Spectrum

e We are interested in how much variance of a discrete series is
associated with a particular frequency.

e We are not interested in the phase of the waves

e In fact, we expect that a turbulent signal does not behave
physically like a wave at all.

e |t is still useful to break the turbulent signal into components
of different frequencies, which we associate with eddies of
different sizes.

e i.e., large eddies have low frequency and small eddies have
high frequency

0
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Discrete Energy Spectrum

¢ Note that the signal power (power at different frequencies) is
defined as:

P= ;/AQ(t)dt

e So we need to find the square of the norm of our transform

FA(n) = F, +1F

~~
real imag
Fi(n)= F,—iF,

complex conjugate
|Fa(n)|? = Fa(n)Fi(n)

= (Fr +1iF;) (Fy — iF5)

= F? — FiF; + F,iF; + F}

= F2 4 F? @
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Discrete Energy Spectrum

e In Matlab:
R = [0 cong [ 0]

length(u) length(u)
e If we sum up |Fa(n)|? from n =1to N — 1, we get the total
biased variance

N—

Z’FA 12Ak—Ak 20124

k=0

|_|

e Thus, we say that the |F4(n)|? is the portion of variance
explained by waves of frequency n.

e Note: we don't sum over n = 0 because that represents the
mean value of the signal, which does not contribute to the
variation of the signal about the mean. @
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Discrete Energy Spectrum

o If we define Ga(n) = |Fa(n)|?, then:

Ga(n)
o4

describes the fraction of the variance explained by frequency
n. In this sense, it is analogous to the correlation coefficient.

e We can write the discrete spectral energy E4(n) as:
Ex(n) = 2|Fa(n)]®
for n =1 to ny when N is odd, or
Ea(n) = 2|Fa(n)|®
form=1tony—1and

Ex(n) = [Fa(n)[?

at n = ny when N is even. @
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Discrete Energy Spectrum

e The discrete spectral energy may be used for variables such as
temperature, humidity, and velocity in order to separate the
total variance into contributions by different frequencies.

e Be careful not to assume that spectra of temperature and
humidity relate to eddy motions since variations of these
variables can persist in a non-turbulent flow as a “footprint”
of previous turbulent activity.

e An example is the residual layer that persists after sundown,
when the gradients of moisture and temperature can maintain
their shapes that were created during the convective boundary
layer.

e The variance of velocity fluctuations u’ has the same units as
turbulence kinetic energy per unit mass - thus, the spectrum
of velocity is often called the energy spectrum. @

22 /34



Spectral Density

e Several theories use continuous spectra instead of discrete
spectra.

e Instead of summing discrete spectra over all n to obtain the
total variance, they assume the existence of a spectral
energy density, that can be integrated over n to yield the
total variance:

ai—/SA(n)dn

e The spectral energy density S4(n) has units of A2 per unit
frequency.

e We can approximate the spectral energy density as:

_ Ea(n)

An @
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Spectral Density

Sa(n) = EZZL)

e An is the difference between neighboring frequencies.

e When n is used to represent frequency, then An = 1. Other
representations, such as f, do not necessarily lead to An = 1.

e The S4(n) points are plotted as curve to represent the

sp ectrum.
3 3
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Fig. 8.8 (a) Discrete spectrum and (b) spectral density graphs for
example 8.6.3.

via Stull (1988)
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Spectral Density
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Fig. 8.9  Different presentations of the same spectrum (see text for details). @

via Stull (1988)
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Spectral Density

linear-linear plots

e As in panel (a), area under curve between pair of frequencies
is proportional to the portion of variance explained by that
range of frequencies.

e Visually useless because high-frequency scales are masked by
the large values at low frequencies.

e Alternative are to expand the low-frequency part of the
spectrum (panel b), or to multiply the spectral density by f
(panel c).

e These approaches still focus on the spectral peak and lose
information at high frequencies.

0
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Spectral Density

semi-log plots

In this approach (panel d), f-Sa(f) is plotted against log(f)
Making the x-axis a log scale results in the expansion of the
low-frequency parts of the spectrum.

Multiplying the spectral density by f results in the expansion
of the high-frequency parts of the spectrum alongt he y-axis.

The area under any part of the curve is proportional to the
variance.
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Spectral Density

log-log plots
e This presentation (panel €) is log Sa(f) vs. log f.

e A wide range of frequencies and spectral densities are
discernible.

o Power laws (such as Kolmogorov's —5/3 law) appear as
straight lines.

e The area under a curve is no longer proportional to variance.

0
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Spectral Density

log-log plots

Another version of the log-log plot (panel ) is log f - Sa(f)
vs. log f.
Same characteristics of previous log-log plot.

f+-Sa(f) has the same units as variance, which makes
normalization easier.

The area under a curve is also no longer proportional to
variance.

One last approach is a normalize (make dimensionless) the
x-axis and y-axis by way of scaling variables (panel g).

0
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Cross Spectra

e Using the ideas before for one variable, consider the cross
spectra of two variables

Gap = Fi(n)Fp(n)
= (Far — iFa;)(Fpr +iFp;)
= FarFgy — 1F A Fpr + FariFg; + FaiFp;
=Co —1Q
where the real parts make up the co-spectrum (C,) and the
imaginary parts make up the quadrative (Q)) spectrum

Co :FATFBT+FAiFBi
Q = FaiFpr — FArFB; @
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Like with variance and energy spectrum, the sum over all
frequencies of all co-spectral amplitudes is the covariance of A
and B.

N-1
> Co(n) = AB
n=0

This is not the same as the spectrum of the time series of
A'B’

As a result, the co-spectrum can have negative values.

Recall, energy spectrum cannot (magnitude).
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Discrete Energy Cospectrum

e We can write the discrete cospectral energy F 4(n) as:
Eap(n) = 2|Co(n)|?
for n =1 to ny when N is odd, or
Eap(n) = 2|Co(n)|*
form=1tony—1and
Eap(n) = |Co(n)|?

at n = ny when N is even.
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Cospectral Density

e We can approximate the co-spectral energy density as:

CSap(n) = EA;E")

e And
A’B’:/CSAB(n)dn

e As CSap(n) — oo at high frequency, we have an indicator of
local isotropy.

0
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Phase Spectrum

e The phase spectrum @ is defined as:

tan® = —
an c

o

e This is interpreted as the phase difference between the two
time series A and Bthat yields the greatest correlation for any
frequency.

e This helps understand the physical structure of the flow.

0
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