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Monin-Obukhov Similarity Theory Recap

Recall from the previous lecture that we used Buckingham Pi
theory to relate non-dimensionalized gradients to fluxes in the
atmospheric surface layer.

MOST Assumptions
e flow is quasi-stationary and horizontally-homogeneous
e turbulent fluxes are constant with height within the ASL.

e molecular exchanges are small compared to turbulent
exchanges.

e rotational effects are neglected.

e influence of surface roughness, boundary-layer depth, and
geostrophic wind are accounted for by 7,,/p.

0

4/32



Monin-Obukhov Similarity Theory Recap

Scaling variables

Uy ™ ( w2

0 = —(W'0) /us
@) .
—(w'q')/us
— @) fu

L= 7ui/(l-€B0) = u? /Kb,

where L is the Obukhov Length, which describes the characteristic
height of the sublayer of dynamic turbulence.
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Monin-Obukhov Similarity Theory Recap

Similarity Theory
e Similarity Theory showed that mean flow variables or average
turbulence quantities, when normalized by z, L, u., 0., etc.,
are functions of ( = z/L only!

o ( helps determine the relative importance of buoyancy versus
shear effects, which makes it akin to the Richardson number

(Ri).
e z> L, buoyancy dominates
e z < L, shear dominates



Monin-Obukhov Similarity Theory Recap

Similarity Theory
e We found these flux-profile relationships

Kz O Kz 00
o = 6m(0) =
Kz 00, B Kz Ob B

kz 0q

=40

e Where ¢ terms are universal functions of z/L and we often
assume ¢y, = ¢y, = ¢Pp = Pq.
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Monin-Obukhov Similarity Theory Recap

Similarity Theory

e We chose the empirical forms of the similarity functions as
derived by Dyer (1974).

neutral Om =1 op =1
unstable ¢ = (1 —160)"* ¢, = (1—16¢) />
stable Om =1+5C on =14+ 5C

e In totality, MOST allows us to determine turbulent fluxes
from the mean gradients (or gradients from fluxes)



Monin-Obukhov Similarity Theory Relationships

e Let's relate these functions to Ri

The flux Richardson number and gradient Richardson number
are, respectively:

w'b b/0z
Rif=——"  and Ri= 1% _
E w'u'0u/0z " 1 (0u/0z)?

Recall our scales: —w'u/ = u2 and —w'l = uyb,.

e And use our flux-profile relationships:

Kz 0T Kz Ob

u**&:d)m and E%:%

With the Obukhov Length

L = —u?/(kBo) = u2/rb. {u}



Monin-Obukhov Similarity Theory Relationships

e Flux Richardson number

Rir — w'b B — Uy Dy - Us bk 2Z - bykz oz
b w/u/aﬂ/az B _uzaﬂ/az B u§¢m N Uzﬁbm B Loy,
Rif = oy

e Gradient Richardson number

by
Ri — ob/0z _ ggﬁ)h :ﬁzb*th: zdn
@u/o2F = T .~ ule T Léd,
(k2)2™™
oo

én
o
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e Let's use K-theory to derive expressions that relate similarity
functions to the turbulent Prandtl and Schmidt numbers.

ou —
— =w'u
™9z
ou
Kp— = u?
™ dz *
2
U
K, = *
u*¢
kz
KzZU
K, = *
Om

Monin-Obukhov Similarity Theory Relationships
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Monin-Obukhov Similarity Theory Relationships

e The Prandtl and Schmidt numbers are defined as:
Pr=v/y, and Sc=v/y
e Analogously, we define their turbulent versions:

Pri = K,,/K, and Sc; = K, /K,

e Thus,
K2 Usx K2Usx
¢m d)h d)m ¢q
Pr, = N O
e KRZUx ¢m “ RZUx d)m
bn bq

e Recall, however, that we assume ¢, ~ ¢y, thus

Pr;, = Sc, = (f:% @
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Monin-Obukhov Similarity Theory Relationships

e Let's relate Pry and Sc; to Rif and Ri :

Ri=¢2 = Rig ? = RifPr, = RirSc,
¢m ¢m
or
Ri
P = S = —
TN T Ry,
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Monin-Obukhov Similarity Theory Relationships

e Consider unstable conditions using Dyer's functions

dm = (1 —16¢)" /4 on = (1—16¢)"Y/2

®n
o2,
Ri¢ = (¢, = ¢(1-16¢)"/* <0

Ri=(-5=(<0
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Monin-Obukhov Similarity Theory Relationships

e Consider stable conditions using Dyer's functions

¢m =1+ 5¢C én=1+5C
O e G

e We can rearrange as

_ Ri
~ 1—5Ri

¢ 0<Ri<0.2

¢ Note that for Ri = 0.2, { = oo (L — 0). This means that
there is no turbulence beyond this value. Thus, the Dyer
functions point to Ri. = 0.2. @
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Surface-Layer Logarithmic Wind Profile

e Consider the case of neutral stratification (¢, = 1)

Kz OU

MU

Uy 02
ou  Usx )
= = now Integrate
0z

Kz
u—lnz—f—C’
K

where C' is a constant of integration.
e This describes the famous logarithmic wind profile in the
atmospheric surface layer.
e Recall that wind should adhere to no-slip conditions (u = 0)
at the surface. However, notice that there is discontinuity at
z = 0. This points to the fact that the flow becomes laminar
for very small z and brings about the concept of surface
roughness. @
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Aerodynamically Smooth and Rough Surfaces

o If we take u, as the velocity scale and &y as the length scale of
turbulence in the ASL, then the Reynolds number criterion for
laminarization of the flow close to the surface (wall) is

)
u ¢

Res =

where v is kinematic viscosity

e Thus, turbulence does not exist at distances from the wall of
the order and less than §y ~ v/u, (note: the oft-used viscous
wall units are defined as 2™ = z/6, and u™ = u/u,)

e Experimental data suggest that d; ~ 5 v/u., where the layer
defined with this depth is called the viscous sublayer.

0

17 /32



Aerodynamically Smooth and Rough Surfaces

Aerodynamically Smooth

e If roughness elements of characteristic size z, are deployed in
the viscous sublayer and z, < d;, then the surface is
aerodynamically smooth.

e Lab data shows that surfaces are smooth for z, < 5v/u,.

e For the atmosphere, this corresponds to z, < 1 mm.

e However, most elements in the ASL are larger than 1 mm.

e Thus, most surfaces in the ASL are aerodynamically rough
(exceptions: ice, mudflats, snow, water under light wind).

Aerodynamically Rough
e The surface is aerodynamically rough for z. > §;.

e Lab data shows that surfaces are rough for z, > 75v /u,.
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Aerodynamic Surface Roughness Length

e In the case of a smooth surface, a turbulence flow regime
represented by a logarithmic profile us possible at a height
above v/u, (well above surface roughness elements).

e In the case of a rough surface, the flow is already turbulent in
the near vicinity of surface roughness elements. Measurements
show that u = 0 at some level close to z, (actually just
below).

e Let's introduce the idea of the surface roughness length.
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Aerodynamic Surface Roughness Length

e Recall the generic log-law profile:
=z C
K

e We will introduce a reference level zg where u = 0, defined
through

C=- <%) In 2z

e This leads to the neutral log-law profile

Use z
u=—In—
K

20

where 2z is called the aerodynamic surface roughness length
(or surface roughness length) for momentum. @
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Mean Flow Above a Smooth Surface

e For smooth surfaces, zy defines the lower asymptotic limit of
the logarithmic wind profile, below which the mean flow
velocity is no longer a characteristic of turbulence.

e We can rearrange the neutral log-law expression and scale
height by d; = v/u.

1 1 *
B P —l—flny/u
Uy K V/u* K 20
1
Lo m2 4o,
Us K V/u*
where
C, = 71 v/ue
20
Lab data suggest that Cs ~ 5 @
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Mean Flow Above a Smooth Surface

e The final form is given by

U 1. zus
— =—1In
Us K v

1
45 or |lut==Ilnz"+5
K

e We can also approximate zg:

Cy= L Y
K 20
V/u* — emCs
20

-C: Y o1 X
U U

Zp=¢€

Or in other words, the surface roughness length for a smooth
surface is approximately 10% of the viscous sublayer depth. @
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Mean Flow Above a Smooth Surface

e The final form is given by

U 1. zus
— =—1In
Us K v

1
45 or |lut==Ilnz"+5
K

e We can also approximate zg:

Cy= L Y
K 20
V/u* — emCs
20

-C: Y o1 X
U U

Zp=¢€

Or in other words, the surface roughness length for a smooth
surface is approximately 10% of the viscous sublayer depth. @
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Mean Flow Above a Rough Surface

e For rough surfaces, zj is directly interpreted as the level where
mean flow velocity vanishes. So,

u z
u=—1In— where u =0 at z = 2
KR 20

e In the real world, zy is a complex function of surface
geometry, involving 2, as one of many parameters.

o Generally, zp increases with increasing z,..
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Mean Flow Above a Rough Surface

e In reality, there is no real consistent average velocity observed
in a flow down to zy (below z,).

e The velocity field obeys the log-law only at some distance
z > zo above the surface.

e In this sense, zg is also the asymptotic limit of the logarithmic
velocity profile.

e In order to make more applicable, we introduce the concept of
the displacement height d.

z—d

u:EIn where u =0at z =29 +d

K 20

e Far above the displaced height (z > d), d is ignored

Uy . 2—d Us
u=—1In —u= In

—In-‘+—~u=—1In—
K 20 K 20/d K 20 @




zo Parameterizations for Sand, Snow, Water

Snow, Sand
e 2o for snow/sand increases with increasing wind speed.
e As wind speed increases, the material moves more actively
and transports more effectively away from the surface.

e Empirical expression:
asu?
g

where ag = 0.016 and wuy > uy. Here, uy = 0.12 m s~
threshold frictions velocity. In the rough wall case, zg may be
considered constant for snow/sand when w, < .

zZ0 —

lis a
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zo Parameterizations for Sand, Snow, Water

Water
e Wind generates waves on a water’s surface.

e Waves occur within a broad range of geometric parameters
(heights/lengths).
e Waves are generated and grow due to many physical

mechanism, such as wave age, fetch, depth of the water body,
and wind velocity (in terms of u,).

e Roughness of wavy water is primarily determined by the
steepest waves, rather than the longest.
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zo Parameterizations for Sand, Snow, Water

Water
e The shortest waves are capillary waves, with
amplitudes/lengths O(1 mm).
e Water is typically considered aerodynamically smooth if
Re, < 1, so if we estimate Re, = zpu./v =~ 0.1, then
20 = ms (V/uy), where mg =~ 0.1.
e Water is fully rough when Re, > 1. In this case we use

20 = acug/g, where a. is the Charnock “constant”, which
ranges from 0.01 — 0.035 (typically 0.014 — 0.019).
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zo for Temperature and Moisture

e Boundary conditions for temperature and moisture at the
underlying surface are formulated based on notions of their
roughness lengths.

0 =05 at zo9 and ¢ = gs at 2z

where zp9 and zp, are interpreted as the levels where 6 and ¢
reach their surface values 0, and g5, respectively.

0
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zo for Temperature and Moisture

e The physical nature of transport mechanisms for momentum,
heat, and moisture differ significantly.

e e.g., pressure fluctuations are important to the transport of
momentum, bu do not directly affect heat and moisture.

e Thus, there is no physical basis to expect that zg and zg, 204
should be the same, or even close.

e There are experimental indications of similarity between heat
and moisture, so zpg ~ 2oq-

0
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Parameterizing the Relationships between zg and zgg, Zoq

e The number of roughness parameters needed is reduced by
parameterizing relationships between them.

e Commonly, z9/z09 and zp/zoq are parameterized based on the
assumption that 6 and ¢ are logarithmic close to the surface.

O In— and q(z):quLq—*hai

0(z) =60s+ —
K 200 K Zogq

thus,

0 z qx z

00 = 9(2’0)—98 == and oq = Q(ZO)_QS =X 1n =
K

200 K 20q

e Experimental data suggest that In(zo/z09) and In(zo/z0q)
may be functions of Re, = zgu. /v for rough surfaces.

0
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Parameterizing the Relationships between zg and zgg, Zoq

¢ Rough
1 1
" —62 Re.'/* —5 and P Re, /4 —5
K 200 K 20q

e Smooth

1 1
S22 =136 P23 —12 and —In-2 =13.6 Sc¥/3 — 12
K 200 K Z0q

e Typical ASL values for Pr and Sc are 0.71 and 0.6,
respectively, for smooth surfaces.

e Thus, z0/209 = 0.5 and zp/z04 = 0.3 (i.e., the roughness
lengths for heat and moisture are typically larger than that for

momentum).
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