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The Ekman Layer



The Ekman Layer

Consider a scenario where fluid flow:
e is bounded below by a flat boundary,
e is purely geostrophic far above this boundary,
e is incompressible,
e is in a steady state,
e has constant density, and

e has constant Coriolis (latitude is taken as constant)



The Ekman Layer

e We want to derive an exact solution of the Navier-Stokes
equations for this scenario.
e We anticipate that this flow behaves as:
o u(z,y,2t) = u(2)
o v(z,y,2,t) =v(2)
o w(x,y,z,t)=0
e That is, the flow is in a steady state, has no vertical motion,
and is horizontally-uniform in any horizontal plane.



The Ekman Layer: Boundary Conditions

Lower Boundary Conditions
e The ground (z = 0) is impermeable (w = 0), which is
automatically satisfied since w is assumed to be zero
everywhere.

e Since this is a viscous flow, we must impose the no-slip
condition at the surface [u(0) = 0,v(0) = 0].
Upper Boundary Conditions
e The scenario says that the flow is purely geostrophic far away

from the lower boundary [u(c0) = ug, v(00) = vg4], where the
geostrophic components are given by:

19p
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The Ekman Layer: Rotated Coordinate System

e We can make life easier if we consider a new Cartesian
coordinate system where the z-axis is aligned in the direction
of the geostrophic wind vector.

e Thus, the y-axis points int he direction of —ﬁp (toward low
pressure).

y geostrophic
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The Ekman Layer: Rotated Coordinate System

e In this new coordinate system:

ug(00) = Uy, wvg(c0) =0, where U, = \/m

e And the PGF at oo satisfies:

19p

0= —;%(oo), fUg = —=—-(c0)

e The no-slip condition remains:



The Ekman Layer: Navier-Stokes and Incompressibility

e Since u =1u(z), v =v(z), and w = 0, the incompressibility
condition (V.U = 0) is automatically satisfied.
e The Navier-Stokes equations reduce to:
1> = N 823
0=—-Vp-2QxU+g+v >
p 0z

or in component form:

T-component: —fv= —l@ u@
p Ox 022
y-component: fu= —1@ + u@
p Oy 022
dp
z-component: — = —pg
0z
e So, hydrostatic balance in the vertical and a three-way
balance between Coriolis, PGF, and friction in the horizontal. @
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The Ekman Layer: Navier-Stokes and Incompressibility

e Take z-derivative of the z-component equation:

o (dp\  Op .
83:<(‘)z> = %9—0 (p is constant)

Interchanging the order of differentiation yields:

o (dp\
az(ax>—0

e So the z-component PGF is independent of height!
e Similarly, the y-component PGF is also independent of height.

0
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The Ekman Layer: Navier-Stokes and Incompressibility

e Accordingly, the horizontal PGF at any height is equal to the
horizontal PGF at z = oo:

—;gi( ) —;gi(oo) =0 (via top bound. condition)
10p 10p . .\
———(any z2) = ———(o0) = fU, via top bound. condition

Salany 2) = —2R(e) = fU, )

e We can use these expression to rewrite the z- and
y-components of the Navier-Stokes equations

2
x-component: —fv= I/g;; (1)
' 0%v
y-component: fu= fUy+ Vo (2)



The Ekman Layer: Navier-Stokes and Incompressibility

Egs. (1) and (2) represent two equations in two unknowns (u
and v).

We want one equation and one unknown.

Use Eq. (1) to express v in terms of u:

v 0%u

Cfo22

v =
Now substitute this into Eq. (2):
0? v 0%u
Ju=IUstvys <_f8z?)

This is one equation and in unknown (u).
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The Ekman Layer: Navier-Stokes and Incompressibility

o If we multiply by f/v? and rearrange, we arrive at a 4t"-order
linear inhomogeneous constant-coefficient ordinary differential
equation (ODE) for u:

ot f?
PER

e Since U, is a constant, we can subtract it from w in the first

term. This will make the ODE homogeneous.

84 f2
@(U—Ug)"‘ﬁ(U_Ug):O

(u—Ug) =0

e Finally, we define a new independent variable % = u — U,
where 4 is the xz-component of the ageostrophic wind. The
ODE is now linear, constant-coefficient, and homogeneous.

a2




The Ekman Layer: Solving the ODE

e To solve the ODE, we seeks solutions of the form: @ = e™?.
e Plugging this into Eq. (3) yields:
(m* + f2/v?) ™ =0
m*+ 212 =0
mt = —f?/1? take root
m? = +if /v take root again

m = £VEIVi/f v

VE1 =1 or 4, but what is \/3?
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The Ekman Layer: Solving the ODE

e Recall Euler's formula:

e = cosm—i—z'sinm‘ (4)

Thus,

eim+2mni _ ez(m+27rn)

= cos (m + 2mn) + isin (m + 2mn)
=cosm +ising (assuming n is an integer)

— ezm

eim+27rm' _ eim‘ (5)




The Ekman Layer: Solving the ODE

Setting m = 7/2 in Euler’s formula, Eq. (4), yields:

™2 = cos (m/2) +isin (7/2) =0+ 1i =i

Using Eq. 5:

i = e™? = ™22 (s an integer)

Now we take the root of i:
\/,; — 2-1/2 _ 6i7r/4+7rm'

= cos (r/4+ mn) + isin (7/4 4+ mn)

Let's evaluate this expression for various value of n.

0
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The Ekman Layer: Solving the ODE

en=20
iY/? = cos (7/4) + isin (7/4)
_ 1 1 :
—%( +1)
en=1

it/ = cos (/4 +7) + isin (7 /4 + )
_ 1 1 :
= _ﬁ( + 1)

You can show that n = 2 is the same as for n = 0.

You can show that n = 3 is the same as for n = 1.

Thus, /i has two distinct roots. @
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The Ekman Layer: Solving the ODE

e Thus, there are four possible solutions for

m = +VEIVi/f/v:

L asa/t
ml—ﬁ(1+) ”
1 N
mz—\@“l‘”\[
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The Ekman Layer: Solving the ODE

e Let's define the Ekman Depth as:

2v
op = 7
e Then we can rewrite the four roots of m as:
1+
mi = 5E
—1—1
mo = (5]3
-1+
m3 = 5E
1—14
my =
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The Ekman Layer: Solving the ODE

e Using our assumed form, the general solution for 4 is:
i = ae™”® + be™?* + e + de™?

where a, b, ¢, and d are constants.

e Substitute our expression for mi, mo, m3, and my:

i = ae(H02/08 | pe(-1-0)3/08 | (o(~1+)2/6p | qo(1-i)2/bp

e We must apply our boundary conditions to solve for the
constants.
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The Ekman Layer: Solving the ODE

e Start with the upper boundary condition.

e Recall u(oco) = Uy and @ = u — Ug, thus
(00) = u(oc0) —Uy; =0

0= lim [ae(1+i)z/5E + be(T1=02/08 | o(=14+0)2/0p | 3,(1-1)2/dp
Z—00
e Look at the real part of these exponentials as z — oc:
e ¢*/dg blows up
e ¢ 2/0p goes to zero

e We must set a = d = 0 to prevent the solutions from blowing
up. This leaves:

i = belT1702/08 4 e(—140)2/08 (6)



The Ekman Layer: Solving the ODE

e To solve for b and ¢, let’s apply the lower no-slip boundary
condition.

e Oneis u(0) = 0. Recall &2 =u — Uy, so u(0) = —U,
e Applying this to Eq. (6):

e The other no-slip condition is v(0) = 0. We want an
expression for v (valid everywhere) and then evaluate it at
z=0.

e Recall that the xz-component Navier-Stokes equation gave:

v 0%u v 0%
LRy 3= e

0
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The Ekman Layer: Solving the ODE

e The first derivative of @i = be(~1792/08 4 ce(=1+1)2/0 g

0u o (=1=14) 1 i (C149) (Cihiyzsen
7, =b 5 e +c on e

e Taking the second derivative yields:

9% (1 i)ze(_1_i)z/5E n G i)26(—1+i)z/6E

022 8% 5%,

(-1—i) > =Q+i)(1+i)=1+2i+i*=14+2i—1=2i
(1432 =(-1+i)(-1+i)=1-2i+i>=1-2i—1=—2i

0
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The Ekman Layer: Solving the ODE

e Substitution gives us:

__voa
v f 022
2iv , .
- (=1-9)z/0p _ ., (—1+4)z/0E
fo2 {be c }
e Using the definition of the Ekman Depth, 0% = 2v/f:
0= —4 [be(*lfi)z/tsE _ Ce(flJri)z/JE] (7)

e Applying the no-slip condition v(0) = 0 to Eq (7):
0——i(b—c)—=b=c

e Combining with our previous result, —U, = b+ c:

b=c=-U,/2 @
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The Ekman Layer: Solving the ODE

e Apply our values of b and ¢ to Eq. (6):

_ Ug [ (c1iyefop | (—14i)2/6
=5 [e te ]

e Factor out the real exponential:

~ o _Ug —Z/5E —7,2/6E .
u=-—e [e +ezz/6E]

e Now we can expand the complex exponentials using Euler’s
formula:

= —%e*"’/‘sE [cos(—z/0g) +isin(—z/dg)

+cos(z/0g) + isin(z/0g)]
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The Ekman Layer: Solving the ODE

e Note that cos(—z) = cos(x) and sin(—x) = — sin(x):
= —Uge_z/‘sE cos(z/0g)

e Finally, since 4 = u — Uy, we obtain u = @ + Uy:

u="U,|1— e~#/m cos(z/éE)} (8)

e Similarly, we can evaluate Eq. (7) to obtain:

v= Uge_z/‘SE sin(z/0g) (9)




The Ekman Layer: Hodograph

The classic Ekman spiral
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The Ekman Layer: Vertical Profiles

Vertical profiles
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The Ekman Layer: Ekman Flow

From the Ekman solution we see that friction induces a flow
component directed toward low pressure.

Ekman Depth dg is the measure of frictional boundary layer
thickness.

At z = dg, the wind is approximately 80% geostrophic.

0 =2v/f
e As friction increases, the thickness increases
e As Coriolis increases, the thickness decreases
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The Ekman Layer: Ekman Flow

e The observed Ekman depths in the atmosphere are on the
order of 1000 m.

e Theory says:

2u 2x1.4x107°5 m?2s!
E =4/ 7 10451 0.5 m

e Those ... are ... not close! Why?

e The atmosphere is turbulent, so U= ﬁ(w,y,z,t) and not
U=U(2).

e However, if we take the spatial average of the Navier Stokes
equations, the averaged equations look like the un-averaged
equations but with molecular viscosity v replaced with a much

larger eddy-viscosity vg. @
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The Ekman Layer: Ekman Flow

e We can compute the eddy-viscosity based on the observed
Ekman depth:

21/E
— =1000 m — vg =

7 (1000 m)? ~ 50 m? s7!

e True Ekman spirals do not exist in nature.

e However, modified (flatter) spirals are observed, as well as the
theoretical result that low-level flow cuts across isobars toward
low-pressure.

o If streamlines are curved, Ekman theory is not strictly valid
because u and v vary in x and y, respectively, as well as in z
(but it's approximately valid).

o We will apply Ekman concepts locally by assuming that the
velocity profile at a local point behaves like an Ekman velocity
profile.
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The Ekman Layer: Ekman Pumping

e The horizontal pressure gradient aloft is largely present at low
levels.

e At low levels, friction induces a flow component toward low
pressure.

e As a result, we get horizontal convergence into the
low-pressure zone.

e This results in rising motion (from mass conservation).
e This can lead to condensation, rain, clouds, storms, etc.

aloft: in boundary
< layer:
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