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The Ekman Layer



The Ekman Layer

Consider a scenario where fluid flow:

• is bounded below by a flat boundary,

• is purely geostrophic far above this boundary,

• is incompressible,

• is in a steady state,

• has constant density, and

• has constant Coriolis (latitude is taken as constant)
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The Ekman Layer

• We want to derive an exact solution of the Navier-Stokes
equations for this scenario.

• We anticipate that this flow behaves as:
• u(x, y, z, t) = u(z)
• v(x, y, z, t) = v(z)
• w(x, y, z, t) = 0

• That is, the flow is in a steady state, has no vertical motion,
and is horizontally-uniform in any horizontal plane.
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The Ekman Layer: Boundary Conditions

Lower Boundary Conditions

• The ground (z = 0) is impermeable (w = 0), which is
automatically satisfied since w is assumed to be zero
everywhere.

• Since this is a viscous flow, we must impose the no-slip
condition at the surface [u(0) = 0, v(0) = 0].

Upper Boundary Conditions

• The scenario says that the flow is purely geostrophic far away
from the lower boundary [u(∞) = ug, v(∞) = vg], where the
geostrophic components are given by:

−fvg = −1

ρ

∂p

∂x
(∞) fug = −1

ρ

∂p

∂y
(∞)
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The Ekman Layer: Rotated Coordinate System

• We can make life easier if we consider a new Cartesian
coordinate system where the x-axis is aligned in the direction
of the geostrophic wind vector.

• Thus, the y-axis points int he direction of − #»∇p (toward low
pressure).
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The Ekman Layer: Rotated Coordinate System

• In this new coordinate system:

ug(∞) = Ug, vg(∞) = 0, where Ug =
√
u2g + v2g

• And the PGF at ∞ satisfies:

0 = −1

ρ

∂p

∂x
(∞), fUg = −1

ρ

∂p

∂y
(∞)

• The no-slip condition remains:

u(0) = 0, v(0) = 0
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The Ekman Layer: Navier-Stokes and Incompressibility

• Since u = u(z), v = v(z), and w = 0, the incompressibility
condition (

#»∇ ·
#»

U = 0) is automatically satisfied.

• The Navier-Stokes equations reduce to:

0 = −1

ρ

#»∇p− 2
#»

Ω × #»

U + #»g + ν
∂2

#»

U

∂z2

or in component form:

x-component: −fv = −1

ρ

∂p

∂x
+ ν

∂2u

∂z2

y-component: fu = −1

ρ

∂p

∂y
+ ν

∂2v

∂z2

z-component:
∂p

∂z
= −ρg

• So, hydrostatic balance in the vertical and a three-way
balance between Coriolis, PGF, and friction in the horizontal.
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The Ekman Layer: Navier-Stokes and Incompressibility

• Take x-derivative of the z-component equation:

∂

∂x

(
∂p

∂z

)
= −∂ρ

∂x
g = 0 (ρ is constant)

Interchanging the order of differentiation yields:

∂

∂z

(
∂p

∂x

)
= 0

• So the x-component PGF is independent of height!

• Similarly, the y-component PGF is also independent of height.
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The Ekman Layer: Navier-Stokes and Incompressibility

• Accordingly, the horizontal PGF at any height is equal to the
horizontal PGF at z =∞:

−1

ρ

∂p

∂x
(any z) = −1

ρ

∂p

∂x
(∞) = 0 (via top bound. condition)

−1

ρ

∂p

∂y
(any z) = −1

ρ

∂p

∂y
(∞) = fUg (via top bound. condition)

• We can use these expression to rewrite the x- and
y-components of the Navier-Stokes equations

x-component: −fv = ν
∂2u

∂z2
(1)

y-component: fu = fUg + ν
∂2v

∂z2
(2)
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The Ekman Layer: Navier-Stokes and Incompressibility

• Eqs. (1) and (2) represent two equations in two unknowns (u
and v).

• We want one equation and one unknown.

• Use Eq. (1) to express v in terms of u:

v = −ν
f

∂2u

∂z2

• Now substitute this into Eq. (2):

fu = fUg + ν
∂2

∂z2

(
−ν
f

∂2u

∂z2

)
This is one equation and in unknown (u).
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The Ekman Layer: Navier-Stokes and Incompressibility

• If we multiply by f/ν2 and rearrange, we arrive at a 4th-order
linear inhomogeneous constant-coefficient ordinary differential
equation (ODE) for u:

∂4u

∂z4
+
f2

ν2
(u− Ug) = 0

• Since Ug is a constant, we can subtract it from u in the first
term. This will make the ODE homogeneous.

∂4

∂z4
(u− Ug) +

f2

ν2
(u− Ug) = 0

• Finally, we define a new independent variable ũ = u− Ug,
where ũ is the x-component of the ageostrophic wind. The
ODE is now linear, constant-coefficient, and homogeneous.

∂4ũ

∂z4
+
f2

ν2
ũ = 0 (3)
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The Ekman Layer: Solving the ODE

• To solve the ODE, we seeks solutions of the form: ũ = emz.

• Plugging this into Eq. (3) yields:(
m4 + f2/ν2

)
emz = 0

m4 + f2/ν2 = 0

m4 = −f2/ν2 take root

m2 = ±if/ν take root again

m = ±
√
±1
√
i
√
f/ν

√
±1 = 1 or i, but what is

√
i?
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The Ekman Layer: Solving the ODE

• Recall Euler’s formula:

eim = cosm+ i sinm (4)

Thus,

eim+2πni = ei(m+2πn) = cos (m+ 2πn) + i sin (m+ 2πn)

= cosm+ i sin q (assuming n is an integer)

= eim

eim+2πni = eim (5)
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The Ekman Layer: Solving the ODE

• Setting m = π/2 in Euler’s formula, Eq. (4), yields:

eiπ/2 = cos (π/2) + i sin (π/2) = 0 + 1i = i

• Using Eq. 5:

i = eiπ/2 = eiπ/2+2πni (n is an integer)

• Now we take the root of i:

√
i = i1/2 = eiπ/4+πni

= cos (π/4 + πn) + i sin (π/4 + πn)

• Let’s evaluate this expression for various value of n.
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The Ekman Layer: Solving the ODE

• n = 0:

i1/2 = cos (π/4) + i sin (π/4)

=
1√
2

(1 + i)

• n = 1:

i1/2 = cos (π/4 + π) + i sin (π/4 + π)

= − 1√
2

(1 + i)

• You can show that n = 2 is the same as for n = 0.

• You can show that n = 3 is the same as for n = 1.

• Thus,
√
i has two distinct roots.
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The Ekman Layer: Solving the ODE

• Thus, there are four possible solutions for
m = ±

√
±1
√
i
√
f/ν:

m1 =
1√
2

(1 + i)

√
f

ν

m2 =
1√
2

(−1− i)
√
f

ν

m3 = im1 =
1√
2

(−1 + i)

√
f

ν

m4 = im2 =
1√
2

(1− i)
√
f

ν
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The Ekman Layer: Solving the ODE

• Let’s define the Ekman Depth as:

δE ≡
√

2ν

f

• Then we can rewrite the four roots of m as:

m1 =
1 + i

δE

m2 =
−1− i
δE

m3 =
−1 + i

δE

m4 =
1− i
δE
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The Ekman Layer: Solving the ODE

• Using our assumed form, the general solution for ũ is:

ũ = aem1z + bem2z + cem3z + dem4z

where a, b, c, and d are constants.

• Substitute our expression for m1,m2,m3, and m4:

ũ = ae(1+i)z/δE + be(−1−i)z/δE + ce(−1+i)z/δE + de(1−i)z/δE

• We must apply our boundary conditions to solve for the
constants.
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The Ekman Layer: Solving the ODE

• Start with the upper boundary condition.

• Recall u(∞) = Ug and ũ = u− UG, thus
ũ(∞) = u(∞)− Ug = 0

0 = lim
z→∞

[
ae(1+i)z/δE + be(−1−i)z/δE + ce(−1+i)z/δE + de(1−i)z/δE

]
• Look at the real part of these exponentials as z →∞:

• ez/δE blows up
• e−z/δE goes to zero

• We must set a = d = 0 to prevent the solutions from blowing
up. This leaves:

ũ = be(−1−i)z/δE + ce(−1+i)z/δE (6)

21 / 32



The Ekman Layer: Solving the ODE

• To solve for b and c, let’s apply the lower no-slip boundary
condition.

• One is u(0) = 0. Recall ũ = u− Ug, so ũ(0) = −Ug
• Applying this to Eq. (6):

−Ug = b+ c

• The other no-slip condition is v(0) = 0. We want an
expression for v (valid everywhere) and then evaluate it at
z = 0.

• Recall that the x-component Navier-Stokes equation gave:

v = −ν
f

∂2u

∂z2
= −ν

f

∂2ũ

∂z2
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The Ekman Layer: Solving the ODE

• The first derivative of ũ = be(−1−i)z/δE + ce(−1+i)z/δE is:

∂ũ

∂z
= b

(−1− i)
δE

e(−1−i)z/δE + c
(−1 + i)

δE
e(−1+i)z/δE

• Taking the second derivative yields:

∂2ũ

∂z2
= b

(−1− i)2

δ2E
e(−1−i)z/δE + c

(−1 + i)2

δ2E
e(−1+i)z/δE

(−1− i)2 = (1 + i)(1 + i) = 1 + 2i+ i2 = 1 + 2i− 1 = 2i

(−1 + i)2 = (−1 + i)(−1 + i) = 1− 2i+ i2 = 1− 2i− 1 = −2i
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The Ekman Layer: Solving the ODE

• Substitution gives us:

v = −ν
f

∂2ũ

∂z2

= − 2iν

fδ2E

[
be(−1−i)z/δE − ce(−1+i)z/δE

]
• Using the definition of the Ekman Depth, δ2E = 2ν/f :

v = −i
[
be(−1−i)z/δE − ce(−1+i)z/δE

]
(7)

• Applying the no-slip condition v(0) = 0 to Eq (7):

0−−i(b− c)→ b = c

• Combining with our previous result, −Ug = b+ c:

b = c = −Ug/2
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The Ekman Layer: Solving the ODE

• Apply our values of b and c to Eq. (6):

ũ = −Ug
2

[
e(−1−i)z/δE + e(−1+i)z/δE

]
• Factor out the real exponential:

ũ = −Ug
2
e−z/δE

[
e−iz/δE + eiz/δE

]
• Now we can expand the complex exponentials using Euler’s

formula:

ũ = −Ug
2
e−z/δE [cos(−z/δE) + i sin(−z/δE)

+ cos(z/δE) + i sin(z/δE)]
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The Ekman Layer: Solving the ODE

• Note that cos(−x) = cos(x) and sin(−x) = − sin(x):

ũ = −Uge−z/δE cos(z/δE)

• Finally, since ũ = u− Ug, we obtain u = ũ+ Ug:

u = Ug

[
1− e−z/δE cos(z/δE)

]
(8)

• Similarly, we can evaluate Eq. (7) to obtain:

v = Uge
−z/δE sin(z/δE) (9)
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The Ekman Layer: Hodograph

The classic Ekman spiral
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The Ekman Layer: Vertical Profiles

Vertical profiles
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The Ekman Layer: Ekman Flow

• From the Ekman solution we see that friction induces a flow
component directed toward low pressure.

• Ekman Depth δE is the measure of frictional boundary layer
thickness.

• At z = δE , the wind is approximately 80% geostrophic.

• δE =
√

2ν/f
• As friction increases, the thickness increases
• As Coriolis increases, the thickness decreases
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The Ekman Layer: Ekman Flow

• The observed Ekman depths in the atmosphere are on the
order of 1000 m.

• Theory says:

δE =

√
2ν

f
=

√
2× 1.4× 10−5 m2 s−1

10−4 s−1
∼ −0.5 m

• Those ... are ... not close! Why?

• The atmosphere is turbulent, so
#»

U =
#»

U (x, y, z, t) and not
#»

U =
#»

U (z).

• However, if we take the spatial average of the Navier Stokes
equations, the averaged equations look like the un-averaged
equations but with molecular viscosity ν replaced with a much
larger eddy-viscosity νE .
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The Ekman Layer: Ekman Flow

• We can compute the eddy-viscosity based on the observed
Ekman depth:√

2νE
f

= 1000 m→ νE =
f

2
(1000 m)2 ∼ 50 m2 s−1

• True Ekman spirals do not exist in nature.

• However, modified (flatter) spirals are observed, as well as the
theoretical result that low-level flow cuts across isobars toward
low-pressure.

• If streamlines are curved, Ekman theory is not strictly valid
because u and v vary in x and y, respectively, as well as in z
(but it’s approximately valid).

• We will apply Ekman concepts locally by assuming that the
velocity profile at a local point behaves like an Ekman velocity
profile.
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The Ekman Layer: Ekman Pumping

• The horizontal pressure gradient aloft is largely present at low
levels.

• At low levels, friction induces a flow component toward low
pressure.

• As a result, we get horizontal convergence into the
low-pressure zone.

• This results in rising motion (from mass conservation).

• This can lead to condensation, rain, clouds, storms, etc.
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